Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
MTHE 225 HOMEWORK SET 6 1. Solve the differential equation: y 0 = sin2 (x − y). 2. Solve the differential equation: y 0 = (6x − 2y + 1)2/3 + 3. 3. Solve the differential equation: 5y 0 = 5xy + 18x2 + 2y 2 . x2 6y 2 + 5x2 , 4. Solve the initial value problem: y = xy 0 1 y(1) = 1. SOLUTION 1. Here we use “direct substitution method”. dy dy du du =1− ⇒ =1− . Now substituting these in the Let u = x − y. That means dx dx dx dx differential equation: dy y0 = = sin2 (x − y) dx du ⇒1− = sin2 u dx du ⇒ = 1 − sin2 u dx du = cos2 u ⇒ dx du ⇒ = dx cos2 u ⇒ sec2 u du = dx Z Z 2 ⇒ sec u du = dx ⇒ tan u = x + C ⇒ tan (x − y) = x + C (implicit solution) ⇒ x − y = arctan (x + C) ⇒ y = x − arctan (x + C) (explicit solution) 2. Here we use “direct substitution method”. du dy dy 1 Let u = 6x − 2y + 1. That means =6−2 ⇒ = dx dx dx 2 substituting these in the differential equation: y 0 = (6x − 2y + 1)2/3 + 3 1 du = u2/3 + 3 2 dx 1 du ⇒− = u2/3 2 dx ⇒3− 2 du 1 du 6− =3− . Now dx 2 dx ⇒ du = −2 dx u2/3 ⇒ u−2/3 du = −2 dx Z Z −2/3 ⇒ u du = −2 dx ⇒ u1/3 1 3 = −2x + C 1 ⇒ u1/3 = (−2x + C) 3 1 ⇒ (6x − 2y + 1)1/3 = (−2x + C) (implicit solution) 3 3 1 ⇒ (6x − 2y + 1) = (−2x + C) 3 3 1 ⇒ 2y = 6x + 1 − (−2x + C) 3 1 1 ⇒ y = 3x + − (−2x + C)3 (explicit solution) 2 54 3. Notice: 5y 0 = dy 5xy + 18x2 + 2y 2 5xy + 18x2 + 2y 2 ⇒ 5 = x2 dx x2 ⇒ 5x2 dy − (5xy + 18x2 + 2y 2 ) dx = 0 (?) This differential equation“looks like” either in homogeneous form or in exact form. So let us first check if it in homogeneous form. Assuming it is in homogeneous form, we have M (x, y) = 5x2 and N (x, y) = 5xy +18x2 +2y 2 . Now notice: M (tx, ty) = 5(tx)2 = t2 (x2 ) = t2 M (x, y) N (tx, ty) = 5(tx)(ty) + 18(tx)2 + 2(ty)2 = t2 (5xy + 18x2 + 2y 2 ) = t2 N (x, y) Hence the given differential equation is in homogeneous form. Let y = ux. That means dy = x du + u dx. Now substituting these in (?): 5x2 (x du + u dx) − (5x(ux) + 18x2 + 2(ux)2 ) dx = 0 ⇒ 5(x du + u dx) − (5u + 18 + 2u2 ) dx = 0 (dividing both sides by 2) ⇒ 5x du + 5u dx − 5u dx − 18 dx − 2u2 dx = 0 ⇒ 5x du − 18 dx − 2u2 dx = 0 3 ⇒ 5x du = (18 + 2u2 ) dx 5 ⇒ x du = (9 + u2 ) dx 2 du 2 dx ⇒ = 2 9+u 5 x Z Z du dx 2 ⇒ = 2 9+u 5 x u 2 1 = ln x + C ⇒ arctan 3 3 5 u 6 ⇒ arctan = ln x + C 3 5 y 6 ⇒ arctan = ln x + C 3x 5 y 6 ⇒ = tan ln x + C 3x 5 6 ⇒ y = 3x tan ln x + C 5 4. Notice: y 0 = (implicit solution) (explicit solution) 6y 2 + 5x2 dy 6y 2 + 5x2 ⇒ = ⇒ xy dy − (6y 2 + 5x2 ) dx = 0 xy dx xy (?) This differential equation“looks like” either in homogeneous form or in exact form. So let us first check if it in homogeneous form. Assuming it is in homogeneous form, we have M (x, y) = xy and N (x, y) = −(6y 2 + 5x2 ). Now notice: M (tx, ty) = (tx)(ty) = t2 (xy) = t2 M (x, y) N (tx, ty) = −(6(ty)2 + 5(tx)2 ) = t2 N (x, y) Hence the given differential equation is in homogeneous form. Let y = ux. That means dy = x du + u dx. Now substituting these in (?): (x)(ux)(x du + u dx) − (6(ux)2 + 5x2 ) dx = 0 ⇒ u(x du + u dx) − (6u2 + 5) dx = 0 ⇒ ux du + u2 dx − 6u2 dx − 5 dx = 0 ⇒ ux du − 5u2 dx − 5 dx = 0 ⇒ ux du = 5(1 + u2 ) dx 4 u 1 du = dx 2 1+u x Z Z u 1 dx ⇒ du = 2 1+u x 1 ⇒ ln (1 + u2 ) = ln x+C (on the left apply v−sub with v = 1+u2 , that is dv = 2u du) 2 1 y2 ⇒ ln 1 + 2 = ln x + C (implicit solution) 2 x y2 ⇒ ln 1 + 2 = 2(ln x + C) x 2 2 y ⇒ 1 + 2 = e2(ln x+C) = e2 ln x e2C = eln x D = x2 D; (D = e2C ) x ⇒ ⇒ x2 + y 2 = x4 D ⇒ y 2 = x4 D − x2 ⇒y= √ √ x4 D − x2 = x x2 D − 1 But we want y(1) = 1. That means 1 = √ value problem is: y = x 2x2 − 1. (explicit solution) √ D − 1 ⇒ D = 2. Hence the solution of the initial 5