Download 6_hws.pdf

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MTHE 225
HOMEWORK SET 6
1. Solve the differential equation: y 0 = sin2 (x − y).
2. Solve the differential equation: y 0 = (6x − 2y + 1)2/3 + 3.
3. Solve the differential equation: 5y 0 =
5xy + 18x2 + 2y 2
.
x2
6y 2 + 5x2
,
4. Solve the initial value problem: y =
xy
0
1
y(1) = 1.
SOLUTION
1.
Here we use “direct substitution method”.
dy
dy
du
du
=1−
⇒
=1−
. Now substituting these in the
Let u = x − y. That means
dx
dx
dx
dx
differential equation:
dy
y0 =
= sin2 (x − y)
dx
du
⇒1−
= sin2 u
dx
du
⇒
= 1 − sin2 u
dx
du
= cos2 u
⇒
dx
du
⇒
= dx
cos2 u
⇒ sec2 u du = dx
Z
Z
2
⇒ sec u du =
dx
⇒ tan u = x + C
⇒ tan (x − y) = x + C
(implicit solution)
⇒ x − y = arctan (x + C)
⇒ y = x − arctan (x + C)
(explicit solution)
2.
Here we use “direct substitution method”.
du
dy
dy
1
Let u = 6x − 2y + 1. That means
=6−2
⇒
=
dx
dx
dx
2
substituting these in the differential equation:
y 0 = (6x − 2y + 1)2/3 + 3
1 du
= u2/3 + 3
2 dx
1 du
⇒−
= u2/3
2 dx
⇒3−
2
du
1 du
6−
=3−
. Now
dx
2 dx
⇒
du
= −2 dx
u2/3
⇒ u−2/3 du = −2 dx
Z
Z
−2/3
⇒ u
du = −2 dx
⇒
u1/3
1
3
= −2x + C
1
⇒ u1/3 = (−2x + C)
3
1
⇒ (6x − 2y + 1)1/3 = (−2x + C)
(implicit solution)
3
3
1
⇒ (6x − 2y + 1) = (−2x + C)
3
3
1
⇒ 2y = 6x + 1 − (−2x + C)
3
1
1
⇒ y = 3x + − (−2x + C)3
(explicit solution)
2 54
3.
Notice: 5y 0 =
dy
5xy + 18x2 + 2y 2
5xy + 18x2 + 2y 2
⇒
5
=
x2
dx
x2
⇒ 5x2 dy − (5xy + 18x2 + 2y 2 ) dx = 0
(?)
This differential equation“looks like” either in homogeneous form or in exact form. So let us
first check if it in homogeneous form.
Assuming it is in homogeneous form, we have M (x, y) = 5x2 and N (x, y) = 5xy +18x2 +2y 2 .
Now notice:
M (tx, ty) = 5(tx)2 = t2 (x2 ) = t2 M (x, y)
N (tx, ty) = 5(tx)(ty) + 18(tx)2 + 2(ty)2 = t2 (5xy + 18x2 + 2y 2 ) = t2 N (x, y)
Hence the given differential equation is in homogeneous form.
Let y = ux. That means dy = x du + u dx. Now substituting these in (?):
5x2 (x du + u dx) − (5x(ux) + 18x2 + 2(ux)2 ) dx = 0
⇒ 5(x du + u dx) − (5u + 18 + 2u2 ) dx = 0 (dividing both sides by 2)
⇒ 5x du + 5u dx − 5u dx − 18 dx − 2u2 dx = 0
⇒ 5x du − 18 dx − 2u2 dx = 0
3
⇒ 5x du = (18 + 2u2 ) dx
5
⇒ x du = (9 + u2 ) dx
2
du
2 dx
⇒
=
2
9+u
5 x
Z
Z
du
dx
2
⇒
=
2
9+u
5
x
u 2
1
= ln x + C
⇒ arctan
3
3
5
u 6
⇒ arctan
= ln x + C
3
5
y 6
⇒ arctan
= ln x + C
3x
5
y
6
⇒
= tan
ln x + C
3x
5
6
⇒ y = 3x tan
ln x + C
5
4.
Notice: y 0 =
(implicit solution)
(explicit solution)
6y 2 + 5x2
dy
6y 2 + 5x2
⇒
=
⇒ xy dy − (6y 2 + 5x2 ) dx = 0
xy
dx
xy
(?)
This differential equation“looks like” either in homogeneous form or in exact form. So let us
first check if it in homogeneous form.
Assuming it is in homogeneous form, we have M (x, y) = xy and N (x, y) = −(6y 2 + 5x2 ).
Now notice:
M (tx, ty) = (tx)(ty) = t2 (xy) = t2 M (x, y)
N (tx, ty) = −(6(ty)2 + 5(tx)2 ) = t2 N (x, y)
Hence the given differential equation is in homogeneous form.
Let y = ux. That means dy = x du + u dx. Now substituting these in (?):
(x)(ux)(x du + u dx) − (6(ux)2 + 5x2 ) dx = 0
⇒ u(x du + u dx) − (6u2 + 5) dx = 0
⇒ ux du + u2 dx − 6u2 dx − 5 dx = 0
⇒ ux du − 5u2 dx − 5 dx = 0
⇒ ux du = 5(1 + u2 ) dx
4
u
1
du = dx
2
1+u
x
Z
Z
u
1
dx
⇒
du =
2
1+u
x
1
⇒ ln (1 + u2 ) = ln x+C
(on the left apply v−sub with v = 1+u2 , that is dv = 2u du)
2
1
y2
⇒ ln 1 + 2 = ln x + C
(implicit solution)
2
x
y2
⇒ ln 1 + 2 = 2(ln x + C)
x
2
2
y
⇒ 1 + 2 = e2(ln x+C) = e2 ln x e2C = eln x D = x2 D;
(D = e2C )
x
⇒
⇒ x2 + y 2 = x4 D
⇒ y 2 = x4 D − x2
⇒y=
√
√
x4 D − x2 = x x2 D − 1
But we want y(1) = 1. That
means 1 =
√
value problem is: y = x 2x2 − 1.
(explicit solution)
√
D − 1 ⇒ D = 2. Hence the solution of the initial
5
Related documents