Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
MATH 225 / MTHE 225 Problem Set 9 1. Solve the differential equation: 2y 00 + 3y 0 − 2y = 14x2 − 4x − 11. 2. Solve the differential equation: y 00 − y 0 − 2y = x + e2x . 3. Solve the differential equation: y 00 + y = 3 sin x. 4. Solve the differential equation: 4y 00 + 4y 0 + y = 3xex . 5. Write the appropriate form of the particular solution of the differential equation but do not find the values of the coefficients involved: y 00 − 2y 0 − 3y = x2 e5x sin (7x). 1 Solution 1. (Non-homogeneous Linear DE with Constant Coefficients) • For yc : Set 2y 00 + 3y 0 − 2y = 0 ⇒ Auxiliary equation: 2m2 + 3m − 2 = 0 ⇒ (2m − 1)(m + 2) = 0 ⇒ m1,2 = 1 ⇒ yc = C1 e 2 x + C2 e−2x . 1 , −2 2 • For yp : Try yp = A2 x2 + A1 x + A0 . ⇒ yp0 = 2A2 x + A1 ⇒ yp00 = 2A2 . Now plug these in the given DE. 2(2A2 ) + 3(2A2 x + A1 ) − 2(A2 x2 + A1 x + A0 ) = 14x2 − 4x − 11 ⇒ (−2A2 )x2 + (6A2 − 2A1 )x + (4A2 + 3A1 − 2A0 ) = 14x2 − 4x − 11 Now compare the coefficients. −2A2 = 14 ⇒ A2 = −7. 6A2 − 2A1 = −4 ⇒ −42 − 2A1 = −4 ⇒ A1 = −19. 4A2 + 3A1 − 2A0 = −11 ⇒ −28 − 57 − 2A0 = −11 ⇒ A0 = −37. So, yp = −7x2 − 19x − 37. 1 Hence the general solution of the DE is y(x) = yc + yp = C1 e 2 x + C2 e−2x − 7x2 − 19x − 37. 2. (Non-homogeneous Linear DE with Constant Coefficients) • For yc : Set y 00 − y 0 − 2y = 0 ⇒ Auxiliary equation: m2 − m − 2 = 0 ⇒ (m − 2)(m + 1) = 0 ⇒ m1,2 = −1, 2 ⇒ yc = C1 e−x + C2 e2x . • For yp : Try yp = (A1 x + A0 ) + Be2x Bxe2x ⇒ yp0 = A1 + B(e2x + 2xe2x ) = A1 + B(1 + 2x)e2x ⇒ yp00 = B(2e2x + (1 + 2x)2e2x ) = B(4 + 4x)e2x . Now plug these in the given DE. (B(4 + 4x)e2x ) − (A1 + B(1 + 2x)e2x ) − 2((A1 x + A0 ) + Bxe2x ) = x + e2x ⇒ (−2A1 )x + (−A1 − 2A0 ) + B(4 + 4x − 1 − 2x − 2x)e2x = x + e2x ⇒ (−2A1 )x + (−A1 − 2A0 ) + B(3)e2x = x + e2x Now compare the coefficients. 1 −2A1 = 1 ⇒ A1 = − . 2 2 −A1 − 2A0 = 0 ⇒ 1 1 − 2A0 = 0 ⇒ A0 = . 2 4 1 3B = 1 ⇒ B = . 3 1 1 1 Therefore, yp = − x + + xe2x . 2 4 3 1 1 1 Hence the general solution of the DE is y(x) = yc + yp = C1 e−x + C2 e2x − x + + xe2x . 2 4 3 3. (Non-homogeneous Linear DE with Constant Coefficients) • For yc : Set y 00 + y = 0 √ ⇒ Auxiliary equation: m2 + 1 = 0 ⇒ m2 − ( −1)2 = 0 ⇒ m2 − i2 = 0 ⇒ (m − i)(m + i) = 0 ⇒ m = ±i. (Recall any complex/imaginary root(s) of a polynomial comes in a pair of form α ± βi) ⇒ yc = C1 eαx cos (βx) + C2 eαx sin (βx) = C1 e0x cos (1x) + C2 e0x sin (1x) = C1 cos x + C2 sin x. ((( (( (+ A( cos B sin x x(A cos x + B sin x) • For yp : Try yp = ( (x 0 ⇒ yp = (A cos x + B sin x) + x(−A sin x + B cos x) ⇒ yp00 = (−A sin x + B cos x) + (−A sin x + B cos x) + x(−A cos x − B sin x) ⇒ yp00 = 2(−A sin x + B cos x) + x(−A cos x − B sin x) Now plug these in the given DE. 2(−A sin x + B cos x) + x(−A cos x − B sin x) + x(A cos x + B sin x) = 3 sin x ⇒ −2A sin x − 2B cos x = 3 sin x Now compare the coefficients. 3 −2A = 3 ⇒ A = − 2 −2B = 0 ⇒ B = 0 3 Therefore, yp = − x cos x 2 3 Hence the general solution of the DE is y(x) = yc + yp = C1 cos x + C2 sin x − x cos x. 2 4. (Non-homogeneous Linear DE with Constant Coefficients) • For yc : Set 4y 00 + 4y 0 + y = 0 1 1 ⇒ Auxiliary equation: 4m2 + 4m + 1 = 0 ⇒ (2m + 1)2 = 0 ⇒ m = − , − . 2 2 1 1 ⇒ yc = C1 e− 2 x + C2 xe− 2 x . 3 • For yp : Try yp = (Ax + B)ex ⇒ yp0 = Aex + (Ax + B)ex = (Ax + A + B)ex ⇒ yp00 = Aex + (Ax + A + B)ex = (Ax + 2A + B)ex Now plug these in the given DE. 4(Ax + 2A + B)ex + 4(Ax + A + B)ex + (Ax + B)ex = 3xex ⇒ (9Ax + 12A + 9B)ex = 3xex ⇒ 9Ax + 12A + 9B = 3x Now compare the coefficients. 1 9A = 3 ⇒ A = 3 1 4 12A + 9B = 0 ⇒ 12 · + 9B = 0 ⇒ B = − 3 9 1 4 x Therefore, yp = x− e 3 9 Hence the general solution of the DE is y(x) = yc + yp = C1 e 5. − 21 x − 21 x + C2 xe + 1 4 x− 3 9 ex . (Non-homogeneous Linear DE with Constant Coefficients) • For yc : Set y 00 − 2y 0 − 3y = 0. ⇒ Auxiliary equation: m2 − 2m − 3 = 0 ⇒ (m + 1)(m − 3) = 0 ⇒ m1,2 = −1, 3. ⇒ yc = C1 e−x + C2 e3x . • For yp : Try yp = (Ax2 + Bx + C)e5x cos (7x) + (Dx2 + Ex + F )e5x sin (7x). It would be WRONG if you write yp = (Ax2 + Bx + C)e5x [D cos (7x) + E sin (7x)]. I might have written this incorrectly in the class. I shall check it on Tuesday’s class. 4