Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
MATH 225 / MTHE 225 Problem Set 2 1. Solve the differential equation: yy 0 = x(1 + y 2 ). 2. Solve the differential equation: y 0 = (1 − y)6 . 5 3. Solve the differential equation: y 0 = 6(1 + x)5 . 4. Solve the differential equation: y 0 = y(y − 1). 5. Solve the differential equation: y 0 = 2xex 2 −y . 6. Solve the initial value problem (IVP): y 0 = ln (x)(1 + y 2 ); 7. Solve the initial value problem (IVP): y 0 = 8e4x (1 + y 2 ); 8. Solve the differential equation: y 0 = 1 + x + y + xy. 1 y(1) = 5. y(0) = 2. Solution 1. (Separable DE) y dy = x(1 + y 2 ) ⇒ yy = x(1 + y ) ⇒ y dy = x dx ⇒ dx 1 + y2 0 2 Z y dy = 1 + y2 Z x dx For the integral on the left, we need to use u-substitution with u = 1 + y 2 . 1 That means, du = 2y dy ⇒ du = y dy. 2 Z Z y du 1 1 1 So, = ln u = ln (1 + y 2 ). dy = 2 1+y 2 u 2 2 Now going back to our ODE we get: x2 1 ln (1 + y 2 ) = + C (implicit solution) 2 2 2 ⇒ ln (1 + y 2 ) = x2 + 2C ⇒ 1 + y 2 = ex +2C ⇒ y 2 = ex p ⇒ y = ± ex2 +2C − 1 (explicit solution). 2 +2C −1 2. (Separable DE) Z Z dy (1 − y)6 dy 1 dy 1 (1 − y)6 0 ⇒ = ⇒ = dx ⇒ = dx y = 5 dx 5 (1 − y)6 5 (1 − y)6 5 Z Z 1 −6 ⇒ (1 − y) dy = dx 5 (1 − y)−5 1 ⇒− = x + C (implicit solution) −5 5 1 1 1 5 ⇒ = x + 5C ⇒ (1 − y) = ⇒ 1 − y = (1 − y)5 x + 5C (x + 5C)1/5 1 ⇒y =1− (explicit solution). (x + 5C)1/5 3. (Separable DE) Z Z dy 5 5 y = 6(1 + x) ⇒ = 6(1 + x) ⇒ dy = 6(1 + x) dx ⇒ dy = 6 (1 + x)5 dx dx 6 (1 + x) + C ⇒ y = (1 + x)6 + C (explicit solution). ⇒y=6 6 0 4. 5 (Separable DE) Z Z 1 dy 1 0 y = y(y − 1) = y(y − 1) ⇒ dy = dx ⇒ dy = dx dx y(y − 1) y(y − 1) (Now “partial fraction decomposition” can be used to calculate the integral of the left hand side, but we can avoid it here.) 2 Z Z Z 1 y − (y − 1) ⇒ dy = dx ⇒ dy = dx y(y − 1) y(y − 1) Z Z Z Z y (y − 1) 1 1 − dy = dx ⇒ − dy = dx ⇒ y(y − 1) y(y − 1) y−1 y Z ⇒ ln (y − 1) − ln y = x + C (implicit solution) y−1 1 1 y−1 =x+C ⇒ = ex+C ⇒ 1 − = ex+C ⇒ = 1 − ex+C ⇒ ln y y y y 1 ⇒y= (explicit solution). 1 − ex+C 5. (Separable DE) 2 dy 2xex dy 2 2 = 2xex −y ⇒ = y = 2xe ⇒ ⇒ ey dy = 2xex dx y dx e Z Z dx y x2 ⇒ e dy = 2xe dx 0 x2 −y 2 For the integral on the right, we need to use u-substitution with u = ex . 2 That means, du = 2xex dx Z Z 2 x2 So, 2xe = du = u = ex . Now going back to our ODE we get: Z Z 2 2 y e dy = 2xex dx ⇒ ey = ex + C (implicit solution). 2 ⇒ y = ln (ex + C) (explicit solution). 6. (Separable DE) dy dy y = ln (x)(1+y ) ⇒ = ln (x)(1+y 2 ) ⇒ = ln x dx ⇒ dx (1 + y 2 ) 0 2 Z dy = (1 + y 2 ) Z ln x dx For the integral on the right, we need to use integration by parts with u = ln x and dv = dx. 1 That means du = dx and v = x. x Z Z Z Z 1 So ln x dx = uv − v du = (ln x)x − x dx = x(ln x) − dx = x(ln x) − x. x Now going back to our ODE we get: Z Z dy = ln x dx ⇒ tan−1 y = x(ln x) − x + C (implicit solution). (1 + y 2 ) ⇒ y = tan (x(ln x) − x + C) (explicit solution). 3 But we need y(1) = 5. That means, 5 = tan (1 ln (1) − 1 + C) ⇒ 5 = tan (C − 1) ⇒ C = 1 + tan−1 5. Plugging this value of C in our explicit solution we get the solution of the IVP as: y = tan x(ln x) − x + 1 + tan−1 5 . 7. (Separable DE) Z Z dy dy dy 4x 2 4x y = 8e (1 + y ) ⇒ = 8e (1 + y ) ⇒ = 8e dx ⇒ = 8e4x dx 2 2 dx 1+y 1+y 4x e + C ⇒ tan−1 y = 2e4x + C (implicit solution). ⇒ tan−1 y = 8 4 ⇒ y = tan 2e4x + C (explicit solution). 0 4x 2 But we need y(0) = 2. That means, 2 = tan (2e0 + C) ⇒ 2 = tan (2 + C) ⇒ C = tan−1 2 − 2. Plugging this value of C in our explicit solution we get the solution of the IVP as: y = tan 2e4x + tan−1 2 − 2 . 8. (Separable DE) dy y 0 = 1 + x + y + xy = (1 + x) + (1 + x)y = (1 + x)(1 + y) ⇒ = (1 + x)(1 + y) dx Z Z dy dy = (1 + x) dx ⇒ = (1 + x) dx ⇒ 1+y 1+y x2 ⇒ ln (1 + y) = x + + C (implicit solution) 2 x2 x2 ⇒ 1 + y = ex+ 2 +C ⇒ y = ex+ 2 +C − 1 (explicit solution) 4