Download Practice Test over Rational Expressions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Intermediate Algebra, MATH 0303
Practice Test over
Operations with Rational Expressions & Solving Equations with Rational Expressions
#1)
Reduce:
2x 2 + 7x + 3
x+3
#2)
Reduce:
6 xz + 15 x − 14 z − 35
6 x 2 + x − 35
#3)
Divide:
3x 2 + 7 x + 4
x+2
#4)
Divide:
a3 − 8
a−2
#5)
Combine:
#6)
Combine:
2
3
1
+ 2
+
x + 3 x + 7 x + 12 x + 4
5 4
−
3t t 2
y 2 + 2 y − 24 y 2 − y − 6 y 2 + 3 y − 18
⋅
÷
y 2 + 3 y + 2 y 2 + y − 20 y 2 + 6 y + 5
#7)
Perform the indicated operations:
#8)
Perform the indicated operations:
2 + y y 2 − 16
⋅
y − 4 8 + y3
#9)
Perform the indicated operations:
xy + 7 x − 3 y − 21 x 2 + 4 x + 3
⋅
xy + y + 7 x + 7
x 2 − 2x − 3
4−
#10)
Simplify the complex fraction:
4+
1
x2
4 1
+
x x2
#11)
Simplify the complex fraction:
x−
1
x−
1
2
#12)
Simplify the complex fraction:
1
1
+
x+a x−a
1
1
−
x+a x−a
#13)
Solve the equation:
5
2 1
= −
2 x x 12
#14)
Solve the equation:
1
2
− 2y
−
= 2
y +2 y −3 y − y −6
y−2
y −3
#15)
Solve the equation for y:
x=
#16)
Solve the equation for P:
1 1 1 1
= + +
P Q R S
SOLUTIONS
#1)
#2)
Reduce:
2 x 2 + 7 x + 3 (2 x + 1)( x + 3)
=
=
x+3
x+3
Reduce:
6 xz + 15 x − 14 z − 35
6 x 2 + x − 35
3x(2 z + 5) − 7(2 z + 5)
(2 x + 5)(3x − 7)
(3x − 7)(2 z + 5)
(2 x + 5)(3x − 7)
2z + 5
2x + 5
2x + 1
3x + 1
x + 2 3x + 7 x + 4
2
3x + 7 x + 4
→
x+2
2
#3)
Divide:
3x 2 + 6 x
x +4
x + 2
2
3x + 1 +
2
x+2
a 2 + 2a + 4
a − 2 a 3 + 0a 2 + 0a − 8
a 3 − 2a 2
a −8
Þ
a−2
3
#4)
Divide:
a 2 + 2a + 4
2a 2 + 0a
2a 2 − 4a
4a − 8
4a − 8
0
2
3
1
+ 2
+
x + 3 x + 7 x + 12 x + 4
2
3
1
+
+
x + 3 ( x + 3)( x + 4) x + 4
#5)
Combine:
2( x + 4)
3
1( x + 3)
+
+
( x + 3)( x + 4) ( x + 3)( x + 4) ( x + 3)( x + 4)
2x + 8 + 3 + x + 3
( x + 3)( x + 4)
3x + 14
( x + 3)( x + 4)
#6)
Combine:
5 4
−
3t t 2
t 5 4 3
⋅ − ⋅
t 3t t 2 3
5t 12
−
3t 2 3t 2
5t − 12
3t 2
y 2 + 2 y − 24 y 2 − y − 6 y 2 + 3 y − 18
⋅
÷
y 2 + 3 y + 2 y 2 + y − 20 y 2 + 6 y + 5
#7)
Perform the indicated operations:
( y + 6)( y − 4) ( y + 2)( y − 3) y 2 + 6 y + 5
⋅
⋅
( y + 1)( y + 2) ( y + 5)( y − 4) y 2 + 3 y − 18
( y + 6)( y − 3) ( y + 1)( y + 5)
⋅
( y + 1)( y + 5) ( y − 3)( y + 6)
1
#8)
Perform the indicated operations:
2 + y y 2 − 16
⋅
y − 4 8 + y3
2+ y
( y + 4)( y − 4)
⋅
y − 4 (2 + y )(4 − 2 y + y 2 )
(2 + y )( y + 4)( y − 4)
( y − 4)(2 + y )(4 − 2 y + y 2 )
y+4
4 − 2y + y2
#9)
Perform the indicated operations:
xy + 7 x − 3 y − 21 x 2 + 4 x + 3
⋅
xy + y + 7 x + 7
x 2 − 2x − 3
( x + 1)( x + 3)
x( y + 7) − 3( y + 7)
⋅
( x + 1)( x − 3)
y ( x + 1) + 7( x + 1)
( x − 3)( y + 7) ( x + 1)( x + 3)
⋅
( x + 1)( x − 3) ( y + 7)( x + 1)
x+3
x +1
x2
⋅ 1
4 1 x2
4+ + 2
x x
1
2
4x −1
4x 2 + 4x + 1
(2 x + 1)(2 x − 1)
(2 x + 1)(2 x + 1)
4−
#10)
Simplify the complex fraction:
1
x2
2x −1
2x + 1
To simplify, multiply
the complex fraction
by one expressed as
the LCD/LCD.
x−
1
1
2
1
x−
x−
#11)
Simplify the complex fraction:
2x 1
−
2 2
1
x−
2x − 1
2
2
x−
2x − 1
2x − 1 x
2
⋅ −
2x − 1 1 2x − 1
2x 2 − x
2
−
2x − 1 2x − 1
Add the
denominator.
Remember that 1
divided by a number is
equal to 1 times the
reciprocal.
2x 2 − x − 2
2x − 1
To simplify, multiply the
complex fraction by one
expressed as the LCD/LCD.
Watch out for the subtraction
sign, which must be distributed
across polynomials.
#12)
Simplify the complex fraction:
1
1
(x + a )(x − a )
+
x+a x−a ⋅
1
(
1
1
x + a )( x − a )
−
1
x+a x−a
x−a+x+a
x − a − ( x + a)
x+x−a+a
x−a−x−a
2x
x−x−a−a
2x
− 2a
−
x
a
To solve equations with rational
expressions, multiply the equation
by the LCD.
#13)
Solve the equation:
5
2 1
= −
2 x x 12
2 1ö
æ 5
= − ÷
12 xç
è 2 x x 12 ø
30 = 24 − x
6 = −x
−6 = x
x = −6
#14)
Solve the equation:
1
2
− 2y
−
= 2
y + 2 y −3 y − y −6
æ 1
ö
2
− 2y
çç
÷÷ ⋅ ( y + 2)( y − 3)
−
=
è y + 2 y − 3 ( y + 2)( y − 3) ø
y − 3 − 2( y + 2) = −2 y
y − 3 − 2 y − 4 = −2 y
y − 2 y − 3 − 4 = −2 y
− y − 7 = −2 y
− 7 = −2 y + y
− 7 = −y
7= y
y=7
x=
#15)
Solve the equation for y:
After multiplying the equation
by the LCD, put all the ys on
one side of the equation, factor
out a y and divide.
y−2
y −3
æ
y −2ö y −3
çç x =
÷⋅
y − 3 ÷ø 1
è
x( y − 3) = y − 2
xy − 3x = y − 2
xy − y = −2 + 3x
y ( x − 1) = −2 + 3x
y=
− 2 + 3x
x −1
1 1 1 1
= + +
P Q R S
#16)
Solve the equation for P:
æ 1 1 1 1 ö PQRS
çç = + + ÷÷ ⋅
1
èP Q R Sø
QRS = PRS + PQS + PQR
QRS = P( RS+QS+QR)
QRS
=P
RS+QS+QR
P=
QRS
RS+QS+QR
Related documents