Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Intermediate Algebra, MATH 0303 Practice Test over Operations with Rational Expressions & Solving Equations with Rational Expressions #1) Reduce: 2x 2 + 7x + 3 x+3 #2) Reduce: 6 xz + 15 x − 14 z − 35 6 x 2 + x − 35 #3) Divide: 3x 2 + 7 x + 4 x+2 #4) Divide: a3 − 8 a−2 #5) Combine: #6) Combine: 2 3 1 + 2 + x + 3 x + 7 x + 12 x + 4 5 4 − 3t t 2 y 2 + 2 y − 24 y 2 − y − 6 y 2 + 3 y − 18 ⋅ ÷ y 2 + 3 y + 2 y 2 + y − 20 y 2 + 6 y + 5 #7) Perform the indicated operations: #8) Perform the indicated operations: 2 + y y 2 − 16 ⋅ y − 4 8 + y3 #9) Perform the indicated operations: xy + 7 x − 3 y − 21 x 2 + 4 x + 3 ⋅ xy + y + 7 x + 7 x 2 − 2x − 3 4− #10) Simplify the complex fraction: 4+ 1 x2 4 1 + x x2 #11) Simplify the complex fraction: x− 1 x− 1 2 #12) Simplify the complex fraction: 1 1 + x+a x−a 1 1 − x+a x−a #13) Solve the equation: 5 2 1 = − 2 x x 12 #14) Solve the equation: 1 2 − 2y − = 2 y +2 y −3 y − y −6 y−2 y −3 #15) Solve the equation for y: x= #16) Solve the equation for P: 1 1 1 1 = + + P Q R S SOLUTIONS #1) #2) Reduce: 2 x 2 + 7 x + 3 (2 x + 1)( x + 3) = = x+3 x+3 Reduce: 6 xz + 15 x − 14 z − 35 6 x 2 + x − 35 3x(2 z + 5) − 7(2 z + 5) (2 x + 5)(3x − 7) (3x − 7)(2 z + 5) (2 x + 5)(3x − 7) 2z + 5 2x + 5 2x + 1 3x + 1 x + 2 3x + 7 x + 4 2 3x + 7 x + 4 → x+2 2 #3) Divide: 3x 2 + 6 x x +4 x + 2 2 3x + 1 + 2 x+2 a 2 + 2a + 4 a − 2 a 3 + 0a 2 + 0a − 8 a 3 − 2a 2 a −8 Þ a−2 3 #4) Divide: a 2 + 2a + 4 2a 2 + 0a 2a 2 − 4a 4a − 8 4a − 8 0 2 3 1 + 2 + x + 3 x + 7 x + 12 x + 4 2 3 1 + + x + 3 ( x + 3)( x + 4) x + 4 #5) Combine: 2( x + 4) 3 1( x + 3) + + ( x + 3)( x + 4) ( x + 3)( x + 4) ( x + 3)( x + 4) 2x + 8 + 3 + x + 3 ( x + 3)( x + 4) 3x + 14 ( x + 3)( x + 4) #6) Combine: 5 4 − 3t t 2 t 5 4 3 ⋅ − ⋅ t 3t t 2 3 5t 12 − 3t 2 3t 2 5t − 12 3t 2 y 2 + 2 y − 24 y 2 − y − 6 y 2 + 3 y − 18 ⋅ ÷ y 2 + 3 y + 2 y 2 + y − 20 y 2 + 6 y + 5 #7) Perform the indicated operations: ( y + 6)( y − 4) ( y + 2)( y − 3) y 2 + 6 y + 5 ⋅ ⋅ ( y + 1)( y + 2) ( y + 5)( y − 4) y 2 + 3 y − 18 ( y + 6)( y − 3) ( y + 1)( y + 5) ⋅ ( y + 1)( y + 5) ( y − 3)( y + 6) 1 #8) Perform the indicated operations: 2 + y y 2 − 16 ⋅ y − 4 8 + y3 2+ y ( y + 4)( y − 4) ⋅ y − 4 (2 + y )(4 − 2 y + y 2 ) (2 + y )( y + 4)( y − 4) ( y − 4)(2 + y )(4 − 2 y + y 2 ) y+4 4 − 2y + y2 #9) Perform the indicated operations: xy + 7 x − 3 y − 21 x 2 + 4 x + 3 ⋅ xy + y + 7 x + 7 x 2 − 2x − 3 ( x + 1)( x + 3) x( y + 7) − 3( y + 7) ⋅ ( x + 1)( x − 3) y ( x + 1) + 7( x + 1) ( x − 3)( y + 7) ( x + 1)( x + 3) ⋅ ( x + 1)( x − 3) ( y + 7)( x + 1) x+3 x +1 x2 ⋅ 1 4 1 x2 4+ + 2 x x 1 2 4x −1 4x 2 + 4x + 1 (2 x + 1)(2 x − 1) (2 x + 1)(2 x + 1) 4− #10) Simplify the complex fraction: 1 x2 2x −1 2x + 1 To simplify, multiply the complex fraction by one expressed as the LCD/LCD. x− 1 1 2 1 x− x− #11) Simplify the complex fraction: 2x 1 − 2 2 1 x− 2x − 1 2 2 x− 2x − 1 2x − 1 x 2 ⋅ − 2x − 1 1 2x − 1 2x 2 − x 2 − 2x − 1 2x − 1 Add the denominator. Remember that 1 divided by a number is equal to 1 times the reciprocal. 2x 2 − x − 2 2x − 1 To simplify, multiply the complex fraction by one expressed as the LCD/LCD. Watch out for the subtraction sign, which must be distributed across polynomials. #12) Simplify the complex fraction: 1 1 (x + a )(x − a ) + x+a x−a ⋅ 1 ( 1 1 x + a )( x − a ) − 1 x+a x−a x−a+x+a x − a − ( x + a) x+x−a+a x−a−x−a 2x x−x−a−a 2x − 2a − x a To solve equations with rational expressions, multiply the equation by the LCD. #13) Solve the equation: 5 2 1 = − 2 x x 12 2 1ö æ 5 = − ÷ 12 xç è 2 x x 12 ø 30 = 24 − x 6 = −x −6 = x x = −6 #14) Solve the equation: 1 2 − 2y − = 2 y + 2 y −3 y − y −6 æ 1 ö 2 − 2y çç ÷÷ ⋅ ( y + 2)( y − 3) − = è y + 2 y − 3 ( y + 2)( y − 3) ø y − 3 − 2( y + 2) = −2 y y − 3 − 2 y − 4 = −2 y y − 2 y − 3 − 4 = −2 y − y − 7 = −2 y − 7 = −2 y + y − 7 = −y 7= y y=7 x= #15) Solve the equation for y: After multiplying the equation by the LCD, put all the ys on one side of the equation, factor out a y and divide. y−2 y −3 æ y −2ö y −3 çç x = ÷⋅ y − 3 ÷ø 1 è x( y − 3) = y − 2 xy − 3x = y − 2 xy − y = −2 + 3x y ( x − 1) = −2 + 3x y= − 2 + 3x x −1 1 1 1 1 = + + P Q R S #16) Solve the equation for P: æ 1 1 1 1 ö PQRS çç = + + ÷÷ ⋅ 1 èP Q R Sø QRS = PRS + PQS + PQR QRS = P( RS+QS+QR) QRS =P RS+QS+QR P= QRS RS+QS+QR