Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
1 Intermediate Algebra (Math 0303) Practice Test over Rational Exponents, Radicals, Equations with Radicals, & Complex Numbers Simplify: 68 #2 Evaluate: 8 3 125 #3 Multiply: ( #4 Simplify: #5 Rationalize: #6 Rationalize: #7 Multiply: ( x+2 #8 Multiply: ( x + 2y #1 2 3 )( x +5 2 x +3 24 x 3 y 7 2 3 4 3+3 )( x −2 ) 3 ) ) 2 112 x 5 y 9 − 2 xy 4 28 x 3 y #9 Combine: #10 Rationalize: #11 Solve the equation: x= #12 Solve the equation: x+4=7 #13 Solve the equation: x−3 = 4 #14 Solve the equation: 2 x + 11 = −3x #15 Solve the equation: x −1 = x − 9 1 3 9x2 2 5 3 − 16 #16 Evaluate: #17 Simplify: i22 #18 Combine: (7 − 3i ) − [2 − (5 + 2i )] #19 Multiply: (3 + 2i )(4 − i ) #20 Rationalize: 5 4 − 2i 4 SOLUTIONS Practice Test over Rational Exponents, Radicals, Equations with Radicals, & Complex Numbers #1 #2 #3 68 Simplify: Evaluate: Multiply: 68 = 4 ⋅ 17 = 4 ⋅ 17 = 2 17 2 13 8 8 = 1 125 125 3 2 2 38 4 2 = = = 3 25 5 125 ( ) 2 3 )( x +5 2 x +3 2 x 2 + 3 x + 10 x + 15 2 x + 13 x + 15 #4 Simplify: 3 24 x 3 y 7 3 8 ⋅ 3x 3 y 6 y 2 xy 2 3 3 y #5 Rationalize: 2 3 2 3 2 3 ⋅ = = 3 3 3 9 #6 Rationalize: 4 3 − 3 4( 3 − 3) 4( 3 − 3) − 2( 3 − 3) ⋅ = = = 3−9 −6 3 3 +3 3 −3 #7 Multiply: ( x+2 x−4 )( x −2 ) Use the difference of squares rule: 2 (a + b)(a – b) = a – b 2 5 Use the binomial square rule: 2 2 2 (a ± b) = (a ± 2ab + b ) ( x + 2 y ) = ( x + 2 y ) ( x + 2 y) (x + 2 ⋅ 2 y x + 4 y )( x + 2 y ) (x + 4 y x + 4 y )( x + 2 y ) 3 2 2 2 #8 Multiply: x x + 2 xy + 4 y x 2 + 8 y 2 x + 4 y 2 x + 8 y 3 x x + 2 xy + 4 xy + 12 y 2 x + 8 y 3 x x + 6 xy + 12 y 2 x + 8 y 3 112 x 5 y 9 − 2 xy 4 28 x 3 y 16 ⋅ 7 x 4 xy 8 y − 2 xy 4 4 ⋅ 7 x 2 xy #9 Combine: 4 x 2 y 4 7 xy − 2 xy 4 ⋅ 2 x 7 xy 4 x 2 y 4 7 xy − 4 x 2 y 4 7 xy 0 x 2 y 4 7 xy 0 #10 Rationalize: 3 1 3 9x 2 ⋅3 3x = 3x 3 3 3x 27 x x= #11 Solve the equation: 3 = 3 3x 3x 2 5 ( x ) = 25 2 x= 4 25 2 6 ( x+4=7 ) x + 4 = (7 ) 2 2 x + 8 x + 16 = 49 x + 8 x = 33 (8 x ) 2 #12 Solve the equation: 121 + 4 ≠ 7 11 + 4 ≠ 7 = (33 − x ) 2 64 x = 1089 − 66 x + x 2 Check: x 2 − 66 x − 64 x + 1089 = 0 x 2 − 130 x + 1089 = 0 ( x − 121)( x − 9) = 0 x − 121 = 0, x − 9 = 0 x = 121, x = 9 9+4=7 3+ 4 = 7 x=9 #13 Solve the equation: ( x−3 = 4 ) 2 x − 3 = 42 x − 3 = 16 x = 19 Check: 19 − 3 = 4 16 = 4 x = 19 2 x + 11 = −3x (2 ) Check: x + 11 = (− 3 x ) 2 2 4(x + 11) = 9 x 2 #14 Solve the equation: 4 x + 44 = 9 x 2 9 x 2 − 4 x − 44 = 0 (9 x − 22)( x + 2) = 0 9 x − 22 = 0, x + 2 = 0 22 x= , x = −2 9 x = -2 2 − 2 + 11 = −3(−2) 2 9=6 2⋅3 = 6 2 22 22 + 11 ≠ −3( ) 9 9 2 22 99 − 66 + ≠ 9 9 9 121 22 ≠− 9 3 11 22 2⋅ ≠ − 3 3 22 22 ≠− 3 3 2 7 ( ) ( 2 x −1 = x−9 ) 2 x − 2 x +1 = x − 9 #15 Solve the equation: − 2 x = −10 25 − 1 = 25 − 9 Check: 5 − 1 = 16 4=4 x =5 ( x) 2 = 52 x = 25 x = 25 #16 Evaluate: #17 Simplify: − 16 = 16 ⋅ −1 = 4i ( ) 5 i 22 = i 4 i 2 = i 2 = 4 Remember that i = 1. #18 Combine: (7 − 3i ) − [2 − (5 + 2i )] 7 − 3i − [2 − 5 − 2i ] 7 − 3i − [− 3 − 2i ] 7 − 3i + 3 + 2i 7+ 3 − 3i + 2i 10 - i #19 Multiply: (3 + 2i )(4 − i ) = 12 − 3i + 8i − 2i 2 = 12 + 5i − 2(− 1) = 12 + 5i + 2 = 14 + 5i #20 Rationalize: 5 4 + 2i 20 + 10i 10(2 + i ) 10(2 + i) 10(2 + i) ⋅ = = = = = 4 − 2i 4 + 2i 16 − 4i 2 16 − 4(− 1) 16 + 4 20 2+i 2