Download The Magic Methyl Effect

Document related concepts
no text concepts found
Transcript
Demystifying the Magic Methyl Effect
Patricia Zhang
MacMillan Group Meeting
June 11, 2015
Demystifying the Magic Methyl Effect
Demystifying the Magic Methyl Effect
■ When is the Magic Methyl Effect in play?
The so-called Magic Methyl Effect: (a general definition)
"a rare but welcome phenomenon" where installation of a methyl
group on a drug candidate leds to an increase in potency
~a large emphasis on the drastic change in conformation, hence, binding affinity
HO
Me
O
O
O
Me
H
O
H
HO
Me
O
O
O
Me
Me
H
O
H
Me
Me
Me
Me
O
O
O
O
Me
mevastatin
IC 50 HMG-CoAR = 5.6 nM
HO
H
Me
Me
lovastatin
IC 50 HMG-CoAR = 2.2 nM
simvastatin
IC 50 HMG-CoAR = 0.9 nM
"The methyl group, so often considered as chemically inert, is able to alter deeply
the pharmacological properties of a molecule."
Bazzini, P.; Wermuth, C. G. In The Practice of Medicinal Chemistry; Academic Press: San Diego, 2008; pp 431-418.
"In comparison to its importance to the pharmaceutical industry, the methyl group is,
in our opinion, underrepresented in recent synthetic chemistry.
Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
Demystifying the Magic Methyl Effect
■ The Benign Methyl Group - DNA vs RNA
O
O
base
Me
NH
N
H
NH
HO
O
O
H
thymine
O
O
P
N
H
H
H/OH
uracil
O-
O-
DNA
N
N
H
RNA
NH 2
O
N
guanine
NH 2
N
N
NH
NH 2
N
H
O
O
cytosine
N
H
N
N
adenine
■ CH/π-interaction has been studied for Me and purine oligonucleotides to show appreciable
change in DNA strand stiffness (important for enzyme recognition of DNA)
Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. Tetrahedron 1995, 51, 8665.
Umezawa, Y.; Nishio, M. Nucleic Acids Res. 2002, 30, 2183.
Demystifying the Magic Methyl Effect
■ The Benign Methyl Group - DNA vs RNA
O
O
base
Me
NH
N
H
NH
HO
O
O
H
thymine
O
O
P
O-
■ yellow = adenine
O-
DNA
N
H
H
H/OH
■ gray = thymine
O
uracil
RNA
■ red = CH/π-interaction
NH 2
O
N
N
H
guanine
N
N
NH
N
NH 2
NH 2
N
H
O
cytosine
N
H
N
N
adenine
■ CH/π-interaction has been studied for Me and purine oligonucleotides to show appreciable
change in DNA strand stiffness (important for enzyme recognition of DNA)
Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. Tetrahedron 1995, 51, 8665.
Umezawa, Y.; Nishio, M. Nucleic Acids Res. 2002, 30, 2183.
Demystifying the Magic Methyl Effect
■ The Benign Methyl Group - CH/π-interactions
CH/π-interactions
H
H
C
H
π(donor)
σ∗(acceptor)
H
Via CH/π-interactions: methyl groups have a greater
chance to be involved in an interaction compared to OH
due to:
■ more (three) hydrogens
■ multiple simultaneous interactions possible
■ additive free energy effects
Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. Tetrahedron 1995, 51, 8665.
Umezawa, Y.; Nishio, M. Nucleic Acids Res. 2002, 30, 2183.
Demystifying the Magic Methyl Effect
■ Modes of Action
a combination of......
Solubility
Conformation
Binding Interactions
Metabolism
later......
Current Synthetic Methods
Demystifying the Magic Methyl Effect
■ Modes of Action
a combination of......
Solubility
Conformation
Binding Interactions
Metabolism
later......
Current Synthetic Methods
Demystifying the Magic Methyl Effect
■ Solubility
General solubility for increased bioavailability
Lipophilicity
Hydrophilic Effect
"lipid loving", hydrophobic
benzene
Me
Me
toluene
OH
Me
Me
n-butanol
8.2g/100g H 2O
Log P = 2.13
Me
Me
Me
isobutanol
5g/100g H 2O
OH
tert-butanol
miscible
Log P = 2.69
Log P is logarithm of the partition
coefficient between n-octanol and water
Me
■ important for crossing biomembranes to
get to target tissues and for transport
through bloodstream
Me
Me
OH
Me
Me
Me
Me
= H 2O
OH
n-pentanol
2.4g/100g H 2O
Me
Me
Me
Me
Me
OH
2-pentanol
4.9g/100g H 2O
Me
OH
neopentanol
12.2g/100g H 2O
■ fewer water molecules needed to be
organized, entropic gain with "globular"
+ 3
shape
■ more negative ΔG desolvation when
transitioning from aqueous to membrane
Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111 , 5215-5246.
Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
Demystifying the Magic Methyl Effect
■ Lipophilicity to increase bioavailability
Placement of methyl groups is important:
Me
HO
HO
O
N
Me
O
morphine
structure elucidated by
Sir Robert Robinson
O
NH
H
HO
O
N
H
HO
normorphine
6-fold reduction in in vivo
analgesic activity
Me
H
HO
codeine
3-fold reduction in in vivo
analgesic activity, 200-fold
reduction in receptor affinity
■ dominant ionic interactions for drug catalytic
site still maintained
■ more polar nitrogen moiety, harder to pass
through blood-brain barrier
Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111 , 5215-5246.
Demystifying the Magic Methyl Effect
■ Lipophilicity to increase bioavailability
Placement of methyl groups is important:
TM = transmembrane domain
HisVI-17
TM-VI
H
N
N
OH
TM III
O
H
■ H-bond interaction
O
AspIII-08
■ van der Waals interactions
H
O
H
O
■ ionic interaction with aminium
cation and carboxylate
N
H-bond donor
Me
H
N
TM V
TrpV-10
PheV-13
Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111 , 5215-5246.
Demystifying the Magic Methyl Effect
■ Lipophilicity to increase bioavailability
Placement of methyl groups is important:
TM = transmembrane domain
TM-VI
HisVI-17
N
N
OH
■ dominant ionic interactions for
drug catalytic site still maintained
H
TM III
O
O
AspIII-08
H
O
H
O
N
■ weaker H-bond interaction
causes 200-fold reduction in
receptor binding
Me
weak H-bond acceptor
Me
H
N
TM V
■ codeine gets metabolized to
morphine
TrpV-10
PheV-13
Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111 , 5215-5246.
Demystifying the Magic Methyl Effect
■ Lipophilicity to increase bioavailability
Placement of methyl groups is important:
TM = transmembrane domain
HisVI-17
TM-VI
H
N
Me
N
O
TM III
O
H
■ H-bond interaction
O
AspIII-08
H
O
H
O
N
H-bond donor
Me
■ heterocodeine has a 2-fold
increase in in vivo activity
■ methyl allyic ether aids in solubility,
hence, passage through central nervous
system
H
N
TM V
TrpV-10
PheV-13
Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111 , 5215-5246.
Demystifying the Magic Methyl Effect
■ Free energy of desolvation
■ more -CH3 groups leads to more spontaneous transfer from aqueous to protein layer
Me
Me
Me
HO
NH 2
HO
NH 2
O
glycine
ΔG transfer kcal/mol=
Me
HO
O
NH 2
Me
Me
Me
HO
NH 2
HO
NH 2
O
O
alanine
valine
leucine
isoleucine
-1.3 (-0.73)
-1.9 (-1.69)
-1.9 (-2.42)
-1.9 (-2.97)
( ) = side chain
contribution moving
from water to ethanol
O
increasing methyls, decreasing ΔGdesolvation
Me
Me
Me
Me
Me
Me
Me
Me
Me
■ ΔΔG transfer of C-H to C-CH3 = 0.8 kcal/mol
■ theoretical ~3.5 fold boost in potency from methylation
Andrews, P. R.; Craik, D. J.; Martin, J. L. J. Med. Chem. 1984, 27, 1648-1657.
Nemethy, G. Angew. Chem. Int. Ed. 1967, 6, 195-206.
Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
Demystifying the Magic Methyl Effect
■ The bigger picture of methylation and potency improvements
■ methylation just as likely to decrease binding affinity as it is to increase
■ rare for addition of Me group to give free energy gain greater than 3 kcal/mol (4 cases,
0.0019%
■ 10 fold boost (1.36 kcal/mol) - 8%
■ 100 fold boost (2.7 kcal/mol) - 0.4%
Leung, C. S.; Leung, S. S. F.; Tirado-Rives, J.; Jorgensen, W. L. J. Med. Chem. 2012, 55, 4489-4500.
Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
Demystifying the Magic Methyl Effect
■ The bigger picture of methylation and potency improvements
■ methylation just as likely to decrease binding affinity as it is to increase
Methyl
Effect
free energy
fromthan 3 kcal/mol (4 cases,
■ rare for addition of MeMagic
group
to give
free- energy
gaingain
greater
Me addition is or above what is predicted
0.0019%
■ 10 fold boost (1.36 kcal/mol) - 8%
■ 100 fold boost (2.7 kcal/mol) - 0.4%
Leung, C. S.; Leung, S. S. F.; Tirado-Rives, J.; Jorgensen, W. L. J. Med. Chem. 2012, 55, 4489-4500.
Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
Demystifying the Magic Methyl Effect
■ How do you invoke the Magic Methyl Effect?
a combination of......
Solubility
Conformation
Binding Interactions
Metabolism
Demystifying the Magic Methyl Effect
■ How do you invoke the Magic Methyl Effect?
a combination of......
Solubility
Conformation
Binding Interactions
Metabolism
Demystifying the Magic Methyl Effect
■ Conformational preorganization leads to ~200-fold boost
O
O
N
H
R
N
H
O
NH
planar
free rotation
O
NH
biphenyl amide inhibitors of p38α kinase
R
K i (nM)
IC 50
H
>2500
>16,000
Me
12
75
Cl
25
160
F
460
2900
OMe
520
3300
O
N
H
Me
rotation out of plane
O
NH
(inhibitor constant, nM needed to
achieve 1/2 max inhibition)
Leung, C. S.; Leung, S. S. F.; Tirado-Rives, J.; Jorgensen, W. L. J. Med. Chem. 2012, 55, 4489-4500.
Angell, R. et al. Bioorg. Med. Chem. Lett. 2008, 18 , 4428-4432.
Demystifying the Magic Methyl Effect
■ Conformational preorganization leads to ~200-fold boost
■ methyl in lipophilic pocket - larger groups do not fit
■ several hydrophobic interactions with biphenyl
■ dihedral angle of o-Me-biphenyl free drug matches the bound conformer best
Leung, C. S.; Leung, S. S. F.; Tirado-Rives, J.; Jorgensen, W. L. J. Med. Chem. 2012, 55, 4489-4500.
Angell, R. et al. Bioorg. Med. Chem. Lett. 2008, 18 , 4428-4432.
Demystifying the Magic Methyl Effect
■ Conformational preorganization leads to ~200-fold boost
■ methyl in lipophilic pocket - larger groups do not fit
■ several hydrophobic interactions with biphenyl
■ dihedral angle of o-Me-biphenyl free drug matches the bound conformer best
Leung, C. S.; Leung, S. S. F.; Tirado-Rives, J.; Jorgensen, W. L. J. Med. Chem. 2012, 55, 4489-4500.
Angell, R. et al. Bioorg. Med. Chem. Lett. 2008, 18 , 4428-4432.
Demystifying the Magic Methyl Effect
■ Conformational preorganization leads to 480-fold boost
F
Me
Me
N
N
O
N
α-methylation
N
N
N
N
H
N
F
π-stacking
O
O
U-shape confirmed by NMR,
minimize 1,3-diaxial strain
N
O
N
96 nM
under development at Merck for insomina,
dual antagonist of orexin-1 and -2 receptors
Me
0.2 nM
"In terms of value, a methyl group that leads to a profound improvement in potency is hard to beat."
If α-substituent is
F
CF3
larger alkyl groups
unstable next to heteroatom, not as much steric influence, change in stereoelectronics
risk of violating Lipinski's rules: CF3: ΔMW= 68 g/mol, ΔclogP~0.9,
Me: ΔMW= 14 g/mol, ΔclogP~0.5)
too lipophilic, not a good track record of becoming drugs
Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
Demystifying the Magic Methyl Effect
■ Use of methyl group to decrease binding affinity
OH
NH
O
Cl
Cl
H
N
O
Tyr355
diclofenac
K i (µM) COX-1 = 0.01
K i (µM) COX-2 = 0.01
N
H
N
H
Arg120
NH 2
O
O
NSAID
O
O
N
H
NH
OH
Cl
Cl
Ser353
Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111 , 5215-5246.
Demystifying the Magic Methyl Effect
■ Use of methyl group to decrease binding affinity
OH
NH
O
Cl
Cl
HN
O
Tyr355
diclofenac
K i (µM) COX-1 = 0.01
K i (µM) COX-2 = 0.01
H 2N
HN
H
Arg120
NH 2
O
no H-bonds
NSAID
Me
O
O
N
H
OH
O
NH
Me
O
Cl
OH
Ser353
F
NH
Cl
F
lumiracoxib
K i (µM) COX-1 = 3.2
K i (µM) COX-2 = 0.06
NSAID, but taken off market
due to liver damage
Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111 , 5215-5246.
Demystifying the Magic Methyl Effect
■ Methyl group installation around freely rotating bonds
"rationally developed" combichem-HTS drug discovery tactic
H
N
N
Me
■ Patients live up to 5 years longer
N
HN
N
O
■ very minimal side effects
■ Bcr-Abl kinase responsible for
cell growth of cancer cells
N
Me
■ first tyrosine-kinase inhibitor on market
N
imatinib - Novartis
treats chronic myelogenous leukemia
by inhibiting Bcr-Abl kinase
Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Nature Rev. Drug Discovery 2002, 1 , 493.
Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111 , 5215-5246.
Demystifying the Magic Methyl Effect
■ Methyl group installation around freely rotating bonds
H
N
N
H
N
N
Ar
H
N
N
O
methylation
N
H
N
N
Me
Ar
O
N
PKA, TK and Bcr-Ablk inhibitor
HTS to get scaffold
Bcr-Ablk selectivity over PKC
Conformers:
N
H
N
H
N
N
Me
N
Ar
H
N
N
O
Me
N
steric clash
N
HN
O
Ar
confirmed by X-ray diffraction
Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Nature Rev. Drug Discovery 2002, 1 , 493.
Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111 , 5215-5246.
Demystifying the Magic Methyl Effect
■ A change in conformation isn't everything
Me
O
N
O
Me
diphenhydramine
diphenhydramine
Toladryl
Benadryl
antihistamines tend to be rigid
Me
3.7-fold increase in activity
2.5-fold decrease in anticholine activity
Me
N
Me
Orphenadrine
Me
Me
Me
O
N
Me
rotation out of plane
O
N
Me
Me
5-fold reduction in activity
2.1-fold increase in anticholine activity
Bazzini, P.; Wermuth, C. G. In The Practice of Medicinal Chemistry; Academic Press: San Diego, 2008; pp 431-418.
Harms, A. F.; Nauta, W. Th. J. Med. Chem. 1959, 2, 57-77.
Demystifying the Magic Methyl Effect
■ A change in conformation isn't everything
Me
O
N
O
Me
diphenhydramine
diphenhydramine
Toladryl
Benadryl
antihistamines tend to be rigid
Me
3.7-fold increase in activity
2.5-fold decrease in anticholine activity
Me
N
Me
Orphenadrine
Me
Me
Me
O
N
Me
rotation out of plane
O
N
Me
Me
5-fold reduction in activity
2.1-fold increase in anticholine activity
Bazzini, P.; Wermuth, C. G. In The Practice of Medicinal Chemistry; Academic Press: San Diego, 2008; pp 431-418.
Harms, A. F.; Nauta, W. Th. J. Med. Chem. 1959, 2, 57-77.
Demystifying the Magic Methyl Effect
■ Overview of where to place Me groups for most impact
ortho substitution
MeO
on substituted alkyl rings
F
Me
O
HO
Me
Me
Cl
Me
Me
N
Me
N
N
N
H
F
Me
N
N
N
H
Me
Me
O
Me
Me
O
Me
NH
Me
Me
97-fold boost
Me
Cl
Me
O
N
H
OH
N
1333-fold boost
N
around two freely rotatable bonds
2135-fold boost
Me
Me
Me
N
N
N
OMe
O
N
Cl
Cl
Me
Me
159-fold boost
598-fold boost
480-fold boost
Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
Demystifying the Magic Methyl Effect
■ How do you invoke the Magic Methyl Effect?
a combination of......
Solubility
Conformation
Binding Interactions
Metabolism
Demystifying the Magic Methyl Effect
■ Prevention and enhancement of drug metabolism
Methyl Groups as Protecting group
Protection of adjacent functional group:
HO
O
prevention of hydrolysis
Me
Me
Me
H 2N
Me
H
N
O
O
O
plasmatic amidases
cleavage blocked
N
O
H
Me
Me
Me
Me
procainamide
Me
O
N
H
N
Me
lidocaine
Me
simvastatin
OH
S
O
O
N
O
meloxicam
N
N
H
Methyl Groups as a Metabolic Soft Spot
Change in half-life:
Me
S
Me
Me
heterocycle susceptible
to oxidation
R
R
Me
Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111 , 5215-5246.
Demystifying the Magic Methyl Effect
■ Prevention and enhancement of drug metabolism
OH
S
O
O
N
N
N
H
OH
[O]
O
S
CYP2C9
S
Me
O
O
N
S
N
H
OH
O
NH 2
Me
S
O
O
sudoxicam
N
S
N
H
N
Me
Me
O
meloxicam
■ Mechanism of metabolization of thiazole derivatives
R1
N
R
S
R1
[O]
N
R
O
S
hydrolysis
NH 2
R
S
O
R1
O
H
+
Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111 , 5215-5246.
Demystifying the Magic Methyl Effect
■ Prevention and enhancement of drug metabolism
OH
S
O
O
N
N
OH
[O]
O
S
N
H
CYP2C9
S
Me
O
O
N
S
N
H
OH
O
N
NH 2
Me
S
O
O
sudoxicam
N
Me
S
N
H
Me
O
meloxicam
■ Alternative oxidation
OH
S
O
O
N
O
N
N
H
Me
S
OH
O
[O]
Me
S
O
N
OH
N
N
H
S
Me
O
Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111 , 5215-5246.
Demystifying the Magic Methyl Effect
■ Oxidation of benzylic methyl groups
Me
F
N
CF3
methylation to decrease
half-life
N
N
H 2NO 2S
CF3
N
MeO 2S
long half-life leads to accumulation
of drug and possible side effects
celecoxib
anti-inflammatory drug
OH
O
HO
[O]
N
MeO 2S
CF3
N
N
CF3
N
MeO 2S
Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111 , 5215-5246.
Demystifying the Magic Methyl Effect
■ Prodrug example
OH
S
O2N
increase potency
H
N
N
H
HO
Me
Me
O
N
N
H
Me
Me
hycanthone
oxaminiquine
antihelmintic drug
in vivo
S
Me
O
N
H
S
Me
[P]O
N
Me
Me
O
N
H
N
Me
more lipophilic,
better bioavailability
Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111 , 5215-5246.
Demystifying the Magic Methyl Effect
■ How are methyl groups typically installed?
HN
De Novo Synthesis
O
N
N
H
O
S
N
O
N
Me
Me
Me
GSK2210875
40 nM, >754-fold boost
Suzuki coupling
O
S
N
NH
N
N
OH
R
R
Callfor
forC-H
C-HtotoC-Me
C-Metransformations
transformations
AACall
O
H
N
N
S
NH
+
O
R
µWave
R
X
selective reduction
S
N
N
N
O
R
R
Pilla, M. et al. Bioorg. Med. Chem. Lett. 2010, 20, 7521-7524.
Demystifying the Magic Methyl Effect
■ How are methyl groups typically installed?
A
A Call
Call for
for C-H
C-H to
to C-Me
C-Me transformations
transformations
i) Boc 2O
ii) RuO 2, NaIO 4
iii) MeMgBr
Me
Me
NH
NH
iv) TFA then NaOH
v) Pd(OH) 2/C, H 2
Me
41%
■ Direct methylation will come in handy during fine-tuning stages of drug development
■ Many cases where methylation of advanced intermediate only possible via de novo
■ Payoff is unknown
■ Need to explore methylated chemical space
■ Recent advances made for CF3, CHF2, monofluorination - leaving Me behind
Cui, L.; Peng, Y.; Zhang, L. J. Am. Chem. Soc. 2009, 131 , 8394-8395.
Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
Demystifying the Magic Methyl Effect
■ Modes of Action
a combination of......
Solubility
Conformation
Binding Interactions
Metabolism
later......
Current Synthetic Methods
Demystifying the Magic Methyl Effect
■ Methylation of C(sp2)-H Bonds
■ Most acidic C-H via induction or ortho-direction
Direct deprotonation via inductive effects:
OMOM
tBuLi, THF
OMOM
OMOM
MeI
Li
Me
-78 °C
Limitations: need base stable functional groups
Li-halogen exchange requires de novo synthesis
■ directed C-H activation with transition metal
First report of complementary acidic methodology:
Me
O
Me
NH
1.5 equiv Pd(OAc) 2
AcOH, 10 equiv MeI, 60 °C
HN
O
O
PdIIL n
MeI
Me
NH
Me
via PdIV
81% yld
Snieckus, V. Chem. Rev. 1990, 90, 879-933.
Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
Tremont, S. J.; Rahman, H. U. J. Am Chem. Soc. 1984, 106 , 5759-5760.
Demystifying the Magic Methyl Effect
■ Methylation of C(sp2)-H Bonds
■ Improvements with Pd(OAc) 2 and MeI
catalytic Pd(OAc) 2:
O
MeO
O
3 equiv MeI, 5 mol% Pd(OAc) 2
N
H
N
MeO
O2, NaOTf, K 2CO3
tAmOH, 125 °C, 36 hr
N
H
N
Me
90%
Ambient temperatures:
MeO
H
N
Me
O
2 equiv MeI, 5 mol% Pd(OAc) 2
H
N
MeO
AgOAc, Cu(OTf)2
TFA, CH2Cl2, 25 °C, 11 hr
Me
Me
O
86%
Jang, M. J.; Youn, S. W. Bull. Korean Chem. Soc. 2011, 32, 2865-2866.
Zhao, Z.; Chen, G. Org. Lett. 2011, 13 , 4850-4853.
Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
Demystifying the Magic Methyl Effect
■ Methylation of C(sp2)-H Bonds
■ Transmetalation reagents can be used
various oxidants needed for metal turnover:
Me
O
Me
S
O
Me
N
Me
O
Me
Me
Me
86%
Me
Me
N
N
Me
O
75%
62%
SnMe4
OH
83%
MeBF 3K
MeB(OH) 2
10 mol% Pd(OAc) 2,
BQ, Cu(OAc)2
MeCN, 100 °C, 40 h
10 mol% Pd(OAc) 2,
MnF 3, AcOH
TFE/H2O, 40 °C, 3h
10 mol% Pd(OAc) 2,
air, BQ, AgOAc
tAMOH, 100 °C, 20 h
O
H
N
Me
Me
MeMgCl
Me
N
10 mol% Co(acac)2
DMPU, THF, rt, 12 h
Me
68%
Me
76%
MeCOOH
2.5 mol% [{Rh(CO)2Cl}2],
Boc 2O, toluene,
140 °C, 24 hr
Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
Demystifying the Magic Methyl Effect
■ Methylation of C(sp2)-H Bonds
■ Transmetalation reagents can be used
various oxidants needed for metal turnover:
Me
O
Me
S
O
Me
N
Me
Me
Me
Me
86%
OH
Me
Me
N
N
Me
O
75%
62%
SnMe4
MeBF 3K
10 mol% Pd(OAc) 2,
MnF 3, AcOH
TFE/H2O, 40 °C, 3h
10 mol% Pd(OAc) 2,
air, BQ, AgOAc
tAMOH, 100 °C, 20 h
O
Me
Ph
O
O
H
N
Me Me
Me
Ph
10 mol% Co(acac)2 Me Me
DMPU, THF, rt, 12 h
peroxides as transmetallating
reagents
68%
Me
83%
MeB(OH) 2
10 mol% Pd(OAc) 2,
BQ, Cu(OAc)2
MeCN, 100 °C, 40 h
MeMgCl
O
10Me
mol% Pd(OAc)N2,
neat,
140 °C, 12 h
Me
β-methyl elimination
76%
MeCOOH
N
2.5 mol% [{Rh(CO)
54% 2Cl}2],
Me
Boc 2O, toluene,
140 °C, 24 hr
Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
Demystifying the Magic Methyl Effect
■ Methylation of C(sp2)-H Bonds
■ Application of Minisci reaction
Et
O
N
+
N
EtCHO
FeSO 4•7H 2O
H 2O2, H 2SO 4
O
N
N
O
O
Et
OH
77%
O
Et
OH
O
easy installation of Me for SAR:
N
Me
N
O
N
O
O
N
O
via AcOH
Et
Et
OH
O
Irinotecan-Pfizer
Topoisomerase I inhibitor,
cancer treatment
O
N
N
O
Et
OH
O
Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
Duncton, M. A. J. Med. Chem. Comm. 2011, 2, 1135-1161.
Demystifying the Magic Methyl Effect
■ Methylation of C(sp2)-H Bonds
■ Me radical generation known to functionalize arenes
O
Me
OH
O
O
O
Me
Me
S
HO
S
Me
Me
O
O
O
Me
HO
S
+
Me
Me
Fenton's Reagent with DMSO
FeSO 4•7H2O, H 2O2, DMSO
diacyl peroxides
heat or hν
Me
Minisci with Fe 2+
Minisci with Ag+
AgNO2, (NH 4)2S2O8, H 2SO 4
FeSO 4•7H2O, tBuO 2H, H 2SO 4
tBuO 2H + Fe 2+
O
+ Fe 3+
Me
OH
carboxylic acid
Fe 3+ + tBuO
+
2 Ag+ + S2O82-
OH
-H+
-CO2
+
+
Me
Me
2 SO 42-
-H+
O
Fe 2+
2 Ag2+ +
OH
Ag2+
-CO2
Ag+
+
Me
carboxylic acid
Giordano, C.; Minisci, F.; Tortelli, V.; Vismara, E. J. Chem. Soc., Perkin Trans. 2 1984, 293.
Levy, M.; Szwarc, M. J. Am. Chem. Soc. 1955, 77, 1949.
Demystifying the Magic Methyl Effect
■ Methylation of C(sp2)-H Bonds
■ Me radical generation known to functionalize arenes
O
Me
OH
O
O
O
Me
Me
S
HO
S
Me
Me
O
O
O
Me
HO
S
+
Me
Me
Fenton's Reagent with DMSO
FeSO 4•7H2O, H 2O2, DMSO
diacyl peroxides
heat or hν
Me
Minisci with Fe 2+
Minisci with Ag+
AgNO2, (NH 4)2S2O8, H 2SO 4
FeSO 4•7H2O, tBuO 2H, H 2SO 4
tBuO 2H + Fe 2+
O
or decomposition:
3+
+
O
Me Fe
Me
OH
Me
carboxylicMe
acid
Fe 3+ + tBuO
+
2 Ag+ + S2O82-
OH
-H+
-CO2 O
Me
Me
+
Me
2 SO 42-
-H+
O
Fe 2+ + Me
+
Me
2 Ag2+ +
OH
Ag2+
-CO2
Ag+
+
Me
carboxylic acid
Giordano, C.; Minisci, F.; Tortelli, V.; Vismara, E. J. Chem. Soc., Perkin Trans. 2 1984, 293.
Levy, M.; Szwarc, M. J. Am. Chem. Soc. 1955, 77, 1949.
Demystifying the Magic Methyl Effect
■ Methylation of C(sp2)-H Bonds
■ Various alkyl radical reagents
O
Me
O
O
O
Me
Me
Me
Me
OH
+
O
O
Me
Me
Me
Me
Me
+
Me
N
N
N
N
N
HO
N
N
N
HO
F
N
F
Me
N
F
Me
Ir(dFCF 3ppy) 2(dtbbpy)PF 6
F
F
Me
F
75% yld, 2.9:1
AcOOtBu, visible light, TFA
N
Me
N
Voriconazole
anti-fungal
N
N
HO
N
Me
F
F
Me
F
DiRocco, D. A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway, D. V.; Tudge, M. Angew. Chem. Int. Ed. 2014, 53, 4802-4806.
Demystifying the Magic Methyl Effect
■ Methylation of C(sp2)-H Bonds
■ Various alkyl radical reagents
Me
Me
Me
2.5 equiv Mn(OAc) 3
1 equiv TFA
BF 3K
Me
Me
N
O
S
O
O
S
O
Me
Zn
2
N
N
O
1g/$205 Aldrich
PSMS
Me
N
N
Me
85%
O
3 equiv PSMS
5 equiv TBHP
PhCF 3/H2O, rt, 24 hr
Me
O
Me
O
Me
O
Me
N
Me
N
N
N
N
Me
75%
SO2Ph
Me
N
N
Me
N
AcOH:H2O 1:1,
50 °C, 18 hr
no methyl examples
BF 3K
O
Ph
Me
N
A: Mg, MeOH, 50 C, 2h
B: SmI2, THF/H2O, rt, 30 min
C: Raney-Ni, EtOH, reflux, 2h
90%
99%
93%
Me
Molander, G. A.; Colombel, V.; Braz, V. A. Org. Lett. 2011, 13 , 1852-1855.
Gui,J.; Baran, P. S. et al. J. Am. Chem. Soc. 2014, 136 , 4853-4856.
Demystifying the Magic Methyl Effect
■ Biocatalytic C-H methylation
■ S-Adenosylmethionine (SAM)- Nature's cofactor for methylation
NH 2
N
Me
H 2N
S
N
O
O
OH
H
OH
N
problems recycling cofactor
N
& is very costly
H
OH
SAM
OH
OH
NovO, SAM
30 mg scale
HO
O
O
HO
O
O
Me
Stecher, H.; Tengg, M.; Ueberbacher, B. J.; Remler, P.; Schwab, H.; Griengl, H.; Gruber-Khadjawi, M. Angew. Chem. Int. Ed. 2009, 48, 9546-9548.
Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
Demystifying the Magic Methyl Effect
■ Methylation of C(sp3)-H Bonds
■ α-Heteroatom functionalization via most acidic CH
An eye toward enantioselectivity:
sBuLi, THF, ligand
N
then Me 2SO 4
Boc
Me
N
then Me 2SO 4
Boc
(-)-sparteine
N
Me
45% yield, 28% ee
N
Boc
N
Me
tBuLi, THF, ligand
O
O
then MeI
88% yield, 94% ee
Boc
sBuLi, THF, ligand
N
92% yield, 36% ee
Me
Me
O
O
Me
N
tBuLi, THF, ligand
O
O
N
N
68% yield, 36% ee
iPr
N
iPr
then MeI
Me
Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
Demystifying the Magic Methyl Effect
■ Methylation of C(sp3)-H Bonds
■ C-H activation examples - emerging interest
O
O
OMe
trimethylboroxine
10 mol% Pd(OAc) 2
OMe
N
Cu(OAc)2, BQ, O2
AcOH, 100 °C
N
Me
Me
70%
favored alkylation of primary position
Me
Me
Me
Me
Me
Me
10 mol% Pd(OAc) 2
1.6 equiv MeB(OH) 2, K 2CO3
Me
O
BQ, air, 80 °C, 48 h
Me
O
HN
HN
OMe
dehydroabietic acid
OMe
40%
other alkyl groups compatible with transformation
for late-stage funcationalization
Chen, X.; Goodhue, C. E., Yu, J.-Q. J. Am. Chem. Soc. 2006, 128 , 12634-12635.
Wang, D.; Wasa, M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130 , 7190-7191.
Demystifying the Magic Methyl Effect
■ Methylation of C(sp3)-H Bonds
■ C-H activation examples - emerging interest
2-3 equiv MeI, 10 mol% Pd(OAc) 2
20 mol% (BnO) 2PO 2H
N
O
Me
NH
Me
Ag2CO3, NaI, Tol/tAmOH
110 °C, 2-20 hr
N
O
NH
Me
Me
86%
γ-Methylation
Zhang, S. Y.; He, G.; Nack, W. A.; Zhao, Y.; Li, Q.; Li, Chen, G. J. Am. Chem. Soc. 2013, 135 , 2124-2127.
Demystifying the Magic Methyl Effect
■ Methylation of C(sp3)-H Bonds
■ C-H activation examples - emerging interest
2-3 equiv MeI, 10 mol% Pd(OAc) 2
20 mol% (BnO) 2PO 2H
N
O
Me
N
O
Ag2CO3, NaI, Tol/tAmOH
110 °C, 2-20 hr
NH
Me
NH
Me
Me
86%
γ-Methylation
excess of MeI leads to multiple C-H activations:
Me
Me
N
H
N
O
5 equiv MeI
Me
Me
N
H
N
N
H
N
O
O
N
H
N
O
77%
Zhang, S. Y.; He, G.; Nack, W. A.; Zhao, Y.; Li, Q.; Li, Chen, G. J. Am. Chem. Soc. 2013, 135 , 2124-2127.
Demystifying the Magic Methyl Effect
■ Methylation of C(sp3)-H Bonds
■ no silver salt oxidant
5 mol% Pd(OAc) 2
3-4 equiv MeI, K 2CO3
N
HN
O
Me
Me
Me
20 mol% PivOH, tAmOH
110 °C
N
HN
O
Me
Me
Me
68%
isolated palladacycle:
O
N
Pd
N
O
Me
Me
CNR
Br 2, CH2Cl2
-78 °C
N Br
Pd
N
Br
Me
Me
CNR
85%
Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132 , 3965-3972.
"You sort of start thinking anything's possible if you've got enough nerve."
Me
Related documents