Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
THz heterodyne receivers using a quantum cascade laser as local oscillator Jian-Rong Gao SRON Netherlands Institute for Space Research, Utrecht/Groningen, The Netherlands Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands ( Tjeerd Klaassen’s group and Teun Klapwijk’s group) In collaboration with MIT /Sandia (USA) University of Paris VII / Thales/ Cavendish Laboratory, Cambridge Outline • Heterodyne technique • HEB-QCL experiment using a metal-metal waveguide QCL •Beam patterns of metal-metal waveguide QCLs •HEB-QCL experiment using surface plasmon mode QCL and the beam •Requirements of THz QCLs for future space or balloon instruments • Phase locking and linewidth of two-mode QCLs (if time allows) Heterodyne detection: principle and advantages Telescope Signal LO IF Spectrum Local Oscillator Power Mixer IF-amplifier IF signal (~GHz) 1000 1010 Frequency (GHz) Power THz signal 4 8 Frequency (GHz) back-end spectrometer • mixing a weak RF signal with a strong LO signal Using a non-linear device, I ∝aV2 or a power-law detector VS= cos(ωSt+ϕ) , VLO= cos(ωLot) IIF ∝ … + VS VLO cos((ωS - ωLo)t +ϕ ) • high spectral resolution (ν/Δν ≥107) HEB-QCL experiment using a metal-metal waveguide MIT QCL at 2.8 THz 25 µm 10 µm THz Radiation 670 µm Active region GaAs/AlGaAs, Metal-metal waveguide ← NbN hot electron bolometer mixer •2.813 THz, 5~7 K, Max. DC dissipation power is ~1 W •Max. output power is ~ 1 mW with a Winston cone (measured at MIT). In QCL-HEB experiment, the power would be less, divergence and window RF test set-up for QCL-HEB HEMT Amplifier Si lens HEB HDPE window Mylar Beam splitter Eccosorb 295 K / 77 K Dewar Amplifier (295 K) Mirror Heat Filter 80 MHz Filter @ 1.4 GHz Power Meter Mirror HDPE THz QCL Dewar Fig.2 (J.R. Gao et al) •Optical loss for QCL ⇔ HEB path: -16.3 dB Current µ (A) 300 270 nW 300 nW 330 nW 2000 200 1500 100 fLO=2.8 THz 0 0 1 2 3 Voltage (mV ) 4 5 N,rec Noise temperature T (K ) Receiver noise temperature of QCL–HEB 25 µm 10 µm THz Radiation 670 µm Active region 1000 •A receiver noise temperature of 1400 K at 2.8 THz (6 µm beam splitter) •extremely stable •A breakthrough: possible to realize all solid state receiver at any frequencies • 300 nW → optical loss → 14 µW at QCL ( ~ 1 % of 1 mW can be used) [1]. J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Appl. Phys. Lett, 2005 [2] H.-W. Hübers et al, Optics Express, 13, 5890(2005). Beam patterns of metal-metal waveguide •Subwavelength facet of a metal-metal QCL acting as a wire antenna Laser ”1” Laser ”2” W (ì m) L (ì m) H (ì m) ! (ì m) 25 25 670 1500 10 10 102.7 109.1 J.L. Adam, I. Kaš alynas, J.N. Hovenier, T.O. Klaassen, J.R. Gao, E.E. Orlova, B.S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 2006 E.E. Orlova, J.N. Hovenier, T.O. Klaassen, I. Kašalynas, A. J.L. Adam, J.R. Gao, T.M. Klapwijk, B.S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Phys. Rev. Lett. (2006). Beam of these surface plasmon QCLs from Paris group 214!m / 153!m gion e R ive Act 1500 !m Fundamental mode 0.02 != 100 µm " = 27% #= 10 cm-1 active region 12!m 12!m Mode intensity(arb. units) 0.03 0.01 0.00 undoped GaAs substrate 0 50 0 o p m e t a l c o n t a c 150 Distance (µm) Top metal contact T 100 t Heavily n-doped GaAs channel: botttom contact H •Two QCLs •at 2.84 THz and a few mW output (5 W input) e a v i l y n - d o p e d G a A s c h a n n e l : b o t t t o m c o n t a c t Beam pattern of the 2.84 THz Surface-plasmon QCL 10 degree offset? Radiation intensity (normalized) Beam due to diffraction and antenna effect 1,0 0,8 !5 Measured Calculated 5.027305"10 Laser "B" ( 214 µm) !=105.6 µm Horizontal plane cut at 10 Degrees Vertical angle 0,6 ( )2 FLT( # , L , $ , n) 0,4 0,2 0,0 -80 -60 -40 -20 0 20 40 Horizontal angle (Degrees) 60 80 !9 6.985254"10 0 0.1 0.2 0 0.3 0.4 0.5 # % 214!m / 153!m • Fraunhofer diffraction for a single slit • Wire antenna effect • The wire antenna effect can be removed by blocking side “facets” of the laser bar 12!m 12!m gion e Re v i t Ac 1500 !m New receiver noise temperature at 2.84 THz using a surface plasmon QCL from Paris group •Surface plasmon QCL + a new HEB designed for high frequencies • simple optics, thin beam splitter, At 2 K, Trec = 1050 K, (1150 K @ 4.2 K) •1050 K = 7.7 × hf/k ( “quantum noise”) & a record at such a high frequency 300 M14S-H2 QCL at 2.84 THz April 12, 2006 250 No LO optimal,300 nW over pumped,380 nW 4000 3000 Currentµ( A) 200 150 2000 100 0 1000 1050 K 50 300 nW, TBath=4.2 K >300 nW, TBath=2 K 0 2 4 6 Voltage (mV) 8 Rec. Noise Temperature (K) 214!m / 153!m 12!m 12!m gion e Re v i t Ac 1500 !m 0 10 M . Hajenius, P. Khosropanah , J.N. Hovenier, J.R. Gao, T.M . Klapwijk, S. Dhillon, S. Barbieri, P. Filloux, C. Sirtori, D.A. Ritchie and H.E. Beere, ISSTT 2006, in Paris, France The importance of the new data DSB Noise Temperature [K] •good prospect: HEB mixers may remain below 10 × hf/k, at f > 3 THz Phonon cooled NbN NbTiN DLR/MSPU CfA CTH KOSMA UMass CfA MSPU NICT IRAM SRON/Delft (twinslot) SRON/Delft (spiral) SRON/Delft/MIT(HEB-QCL) 10hf/k 1000 HEB-QCL 100 0.4 0.50.60.70.8 0.91 J.J.A.Baselmans et al, Appl. Phys. Lett, 2004 M. Hajenius et al, Supercond. Sci. Technol, 2004 J.R. Gao et al, Appl. Phys. Lett, 2005 Z.Q. Yang et al, Supercond. Sci. Technol, 2006 M. Hajenius et al, ISSTT 2006, Paris 2 3 Frequency [THz] 4 5 6 78 Future space or balloon instruments 1) 2) 3) 4) 5) TELIS ( German, Dutch, English), 500-650 GHz, 1.8 THz, 2.5 THz, 3.5THz (OH line) Japanese BSMILE, 2.5 or 3.5 THz (OH line) German-US, SOFIA 2.6, and 4.7 THz Proposal: US Stratospheric THz Observatory (STO), 2.7 THz Proposal: European ESPRIT ( 6 telescopes, heterodyne), 2-6 THz, Space concept mission Requirements of THz QCLs for future space or balloon instruments 1) 2) 3) Prefer to have operating temperature around 70 K If so, the input power is a less important issue Or 5-10 K, then the input power must be low, e.g. < 100 mW QCL output power of 1.3 µW – 16 µW , corresponding to the power at HEB (30 nW – 500 nW) If Gaussian beam See Z.Q. Yang et al, IRMMW THz2005 paper 4) A reasonable good beam, ideally a Gaussian beam 5) DFB or other frequency control capability, at the target frequency within 3-4 GHz. A bit tuning range will be very helpful Phase or frequency locking, which depends on the application 6) Z.Q. Yang, M. Hajenius, J.N. Hovenier, A. Baryshev, J.J.A. Baselmans, J.R. Gao, T.M. Klapwijk, A.J.L. Adam, T.O. Klaassen, B.S. Williams, S. Kumar, Q. Hu and J. L. Reno, IRMMW-THz2005, Williamsburg, Virginia, USA, Sep. 19-23, 2005, p465-466. FTS spectral of THz QCL (a.u.) Phase locking and linewidth of two-mode QCLs 3 Temp 5K 2.7 THz QCL Spectrum analyzer (two modes) Source locking microwave counter 2 7,700 GHz HEB Mixer 1 2.7300 2.7360 coupler IF Amp MIT group 0.1-12 GHz phase error signal 2.7420 2.7480 2.7540 2.7600 Frequency (THz) 40 µm 25 10 µm •Metal-metal waveguide GaAs/AlGaAs QCL THz Radiation - 2.8 THz, has two lateral modes - the difference in frequency ~ 7-8 GHz -different temperature and current dependence - Two modes are not strongly correlated µm 670 1 mm Active region 7.69999 7 .6 9 9 9 9 -20 (a) RBW:1 kHz 0.8 0.30 7.70000 120 Hz Beat signal power (a.u.) 0.28 7.70001 (b) Beat signal power (dB) Beat signal power (dB) -10 0 .2 6 Bias Current (A) -30 -40 1.1 kHz 7.6 0.26 -20 (a) RBW:1 kHz Cold plate T=7 K 7.8 RBW:100 Hz -10 Beat Frequency (GHz) Beat signal power (dB) Results: phase locking and linewidth Points: exp. data line: Lorentzian fit FWHM Linewidth:12.6 kHz RBW;10 KHz VBW;100 Hz SWT;1 s 0.4 (b) RBW:100 Hz 0.0 7.72390 -30 7.72400 Frequency (GHz) 7.72410 -40 7.699998 7.699998 -10 -20 7.700000 10 Hz 7.700002 (c ) (c) R B W : 1 0 Hz RBW:10 H z -30 -40 -50 -60 7.6999998 •Realized phase-locking • two Lorentzian, by “2” ⇒ 6.3 kHz for single line • Linewidth ΔνSchawlow-Townes = 0.7 KHz, 7.7000000 7.7000002 Frequency (GHz) A. Baryshev, J.N. Hovenier, A.J.L. Adam, I. Kašalynas, J.R. Gao, T.O. Klaassen, B.S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 2006 Requirements of LO source for a lab test • • • Any THz frequenceis, but hope not in the strong water absorption A directional and focus beam Power of > 16 µW at QCL ( 500 nW at HEB, a big HEB) or 1.3 µW if we use a small HEB (30 nW) • • 4 K to any temperatures Input power , prefered to be 1 W or less 40% R.H. 60% R.H. 80 % R.H. loss [dB/m] 100 10 1 2600 2800 3000 3200 Frequency[GHz] 3400 3600