Download presentation

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Phuse 2015 – PD05 Working as a data scien8st with real world clinical data 13 October 2015 Oct-­‐2015 Berber PhUSE 2015 -­‐ Data SSnoeijer cien3st RW 1 Filmpje h<ps://www.youtube.com/watch?
v=UoYl7eCesqw&feature=youtu.be&a Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 2 Clinical data scien8st • 
• 
• 
• 
• 
• 
• 
• 
Data prepara3on Collabora3on Advanced Programming Sta3s3cs Scien3fic rigour Visualisa3ons Hacker mindset Understanding clinical data Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 3 Data prepara8on •  Data from different sources –  GP database –  Pharmacy claims database –  Hospital admissions –  Hospital pharmacies –  Laboratories –  Addi3onal data sources Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 4 Data prepara8on • 
• 
• 
• 
• 
• 
Extracted Standardized Linked Coded Explored Crea3on of analysis datasets Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 5 Collabora8on •  Different departments –  Informa3on Management –  Research –  Repor3ng •  Engage with senior management •  Explore customer needs •  Influence without authority Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 6 Advanced programming • 
• 
• 
• 
SAS Base SQL queries SAS Macro SAS Graph –  GTL •  SAS VA •  Other programming languages Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 7 Good Programming Prac8ces •  Efficient –  What is the most straighborward method (less code) –  What is the fastest method (less 3me) •  Repeatable –  Macro language –  No re-­‐programming of same code •  Clear and transferable –  Debugging must easy –  Be<er to understand by colleagues Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 8 Example: SAS SQL combined with MACRO PROC SQL;
CREATE TABLE __allPat AS
SELECT &repmonc COUNT(Distinct &pat) AS TotPat
FROM &DsIn
WHERE &geslacht IN ('M','V') AND age ne . AND age<98
%IF &bymon=Y %THEN %STR(GROUP BY repmon);
;
QUIT;
Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 9 Sta8s8cs •  Descrip3ve –  Mean, median, percen3les etc •  Modelling –  Influence of surrounding factors •  Forecas3ng •  Explora3ve •  Pa<ern seeking Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 10 Diabetes adherence – descrip8ve Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 11 COPD drug predictors of indica8on Dura3on of use Age gender R03BA ipratropium LABA (not combined) 3otropium R01 Oct-­‐2015 montelukast PhUSE 2015 -­‐ Data Scien3st RW 12 Scien8fic rigour •  Understand data •  Dis3nguish sens from nonsense •  Understand need of customers (caretakers and pharma companies) •  Be able to fund and discuss the obtained results Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 13 Visualisa8ons •  Two types –  Explora3ve –  Explanatory •  Give insight in a glance •  Insight in data –  Understandable / Intui3ve –  Not too much informa3on Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 14 Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 15 Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 16 Hacker mindset • 
• 
• 
• 
Curious about the data Problem solver Crea3ve Out of the box –  Try to find what is not obvious… –  Find abberant pa<erns … Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 17 Using real world clinical data •  Privacy –  Permission of pa3ent and the owner of the data (caretaker) –  Data security –  Anonymizing –  Documenta3on of process •  Big data –  Miljons of records –  At least 7 years history –  Lot of possible links to other databases Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 18 Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 19 WWW.PHARMO.COM
Oct-­‐2015 PhUSE 2015 -­‐ Data Scien3st RW 20 
Related documents