Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Nickel-Catalyzed Cycloadditions Tristan Lambert MacMillan Group Meeting January 31, 2001 Properties of nickel Introduction to metal-catalyzed cycloadditions Nickel-catalyzed cycloadditions Review of metal-catalyzed cycloadditions: Lautens, Chem. Rev., 1996, 96, 49. Physical Properties of Nickel Across the first row of transition metals, there is a trend towards decreased stability of higher oxidation states such that only Ni(II) occurs in the normal chemistry of the element Sc Ti V Cr Mn Fe Co Ni Cu Zn decreased stability of higher oxidation states Cotton, Advanced Inorganic Chemistry, 6th ed.; p. 835 The vast majority of Ni(II) complexes are square planar dx2-y2 Tetrahedral Ni complexes are important with bulky (i.e. phosphine) ligands dxy "Free ion" dz2 Tetrahedral Octahedral Tetragonal distortion Square planar configuration avoids occupation of high energy anitbonding orbital dxz, dyz Square planar Greenwood, Chemistry of the elements; p. 1347 Introduction to Metal-Catalyzed Cycloadditions Definition of Cycloaddition: -A reaction of two separate ! systems in which a ring is formed with two more " bonds and two fewer ! bonds than the reactants X cycloaddition cyclization Note: As an exception to the above definition, in certain cases one of the ! systems can be a reactive " bond Cycloadditions have been promoted by heat, light, Lewis acids, high pressure, and sonication Many of these conditions require the presence of polarized functional groups in the substrate to facilitate the transformation. In general reaction of unactivated olefins, acetylenes, or dienes is notoriously poor and extreme conditions are necessary to achieve good yields of cycloadducts Metal catalysts provide new opportunities for highly selective cycloaddition reactions since complexation of a metal to a reactant significantly modifies its reactivity, thus allowing for improved reactivity and novel chemistry It should be emphasized that while the products of these reactions are clearly cycloadducts, most if not all reactions proceed in a stepwise fashion and probably involve a cyclization as a key event Lautens, Chem. Rev., 1996, 96, 49. [2 + 1] Cycloadditions: Ni(II) Catalyzed Cyclopropanations of Electron Deficient Olefins Metal-Stabilized Alkyl Carbenes Yield (with respect to CH2Br2) 10 mol% NiBr2 0.6 eq NaI, 0.8 eq Zn CN CN 92% 0.5 eq CH2Br2, 0 oC, 42h 10 mol% NiBr2 1.0 eq NaI, 0.8 eq Zn CO2Me CO2Me 10 mol% NiBr2 Me 1.0 eq NaI, 0.8 eq Zn Me O 90% 0.5 eq CH2Br2, 0 oC, 24h 97% O 0.5 eq CH2Br2, 0 oC, 96h Kanai, Chem. Lett., 1979, 1979. Kanai, Bull. Chem. Soc. Jpn., 1983, 53, 1025. General Reactivity Trends with Various Catalysts catalyst reactive olefins Rh2(OAc)4 styrene, enol ethers Cu(acac)2, CuClP(OMe)3 enamines, alkyl substituted olefins Cu(OTf)2, Cu(OTf), Cu(BF4)2 terminal olefins Pd(OAc)2, PdCl2, Pd(PPh3)4 styrene, strained, conjugated terminal olefins; #,$-unsaturated carbonyl compounds Ni(COD)2, Ni(PPh3)4, NaI/Zn and NiBr2 #,$-unsaturated carbonyl compounds, acrylonitrile Catalytic Cycle of Ni(II) Catalyzed Cyclopropanation Catalytic Cycle NiBr2 Zn EWG Notes: Differences with the Simmons-Smith reaction ZnBr2 H EWG 1. Electron deficient olefins are more reactive than electron rich olefins Ni0 2. Dibromomethane is more suitable than diiodomethane 3. No cyclopropanation occurs in diethyl ether (reactions performed in THF) CH2Br2 EWG Ni 10-20 mol% ZnBr2 or AlCl3 additive dramatically increases yields. >50 mol% dramatically decreases yields. Excess NaI (4 eq) is also beneficical. Br H H2C Ni EWG Br EWG The role of Lewis acids and solvent has not been H H clarified Zn or Ni0 Ni EWG ZnBr2 or NiII EWG = CO2Me, CN, COMe, CHO Kanai, Bull. Chem. Soc. Jpn., 1983, 53, 1025. [2 + 1] Cycloadditions: Nickel Carbenes From Highly Strained Hydrocarbons Bicyclo[1.1.0]butane: strain energy 66 kcal/mol + Ni(COD)2 CO2Me CO2Me 0 oC 92% H Noyori, Tetrahedron Lett., 1974, 1749. Mechanism: R R H R Ni(0) E H LnNi E H Ni H H R LnNi H Nature of bonding in Ni-carbene R1 Ni H R H Reaction is stereospecific with respect to the starting olefin C E + + H Ni H H E H + Ni C R2 - E R1 C R2 Carbenoids involving metals with high backbonding capacity have considerable ylide character Nickel has low electronegativity carbenenoid carbon nucleophilic Noyori, Tetrahedron Lett., 1973, 1691. [2 + 1] Cycloadditions: Vinyl Carbenes E E Me MeO2C 73% Me A CO2Me Ni(COD)2 E E + 3% A 60% MeO2C B CO2Me Cis maleate undergoes Ni-catalyzed isomerization leading to small amounts of trans product Mechanism: E E E E Ln-1Ni Ln-1Ni E Me LnNi not observed E Ln-1Ni Me E Ln-1Ni Ln-1Ni E E E Binger, Chem. Ber., 117, 1984, 1551. [2 + 2] Cycloadditions: Catalysis of Thermally Forbidden Processes Early Examples Dimerization of Norbornadiene Ni, Fe, or Co cat. Vallerino, J. Chem. Soc., 1957, 2287. Dimerization of 1,3-butadiene Ni(COD)2 + P(O-o-biPh)3 97% 2.4% Heimbach, ACIEE, 1967, 6, 800. [2 + 2] Cycloadditions: Strained Alkenes and Electron Deficient Olefins 50 mol% Ni cat. + H Z 45-70 oC neat 72-120 h A Ni cat. = Ni(COD)2 or Ni(AN)2 Z = CN 55% 63:37 Z = CO2Me 72% 78:22 + Z Z H B Yield AN = acrylonitrile A:B Noyori, Bull. Chem. Soc. Jpn., 55, 1982, 852. Ni(0) catalyzed reaction of electron deficient olefins with norbornadienes usually gives [2 + 2 + 2] homo-Diels-Alder adducts Certain strained or highly reactive enophiles undergo exclusive [2 + 2] pathway H H 5 mol% Ni(COD)2 5.5 mol% PPh3 + PhH, r.t., 24 h Ni 86% L Note: Pd(0) results in [3 + 2] cycloaddition Z Noyori, J. Am. Chem. Soc., 1973, 95, 1674. origins of endo selectivity O 22 mol% Ni(COD)2 E + E N Ph E E 43 mol% PPh3 E = CO2Me O When E = electron donating O N O Ph 49% exo only endo products observed (5-12 : 1) Lautens, J. Am. Chem. Soc., 117, 1995, 10276. [ 2 + 2 ] Cycloadditions: Electron-Deficient Allenes Thermal [ 2 + 2 ] with allenes gives mixture of regioisomers R R R heat R + + + • 2 R R R R etc. R Nickel-catalyzed reaction is highly selective EWG EWG EWG 2 • cat. Ni0 • -15 oC to rt 30 min to 3h • 33-81% single isomer EWG EWG EWG = n-C6F13, C6F5, CO2Et, CON(Me)Ph, COEt, COPh, SO2Ph Catalytic cycle EWG EWG Ni0 • EWG EWG EWG • Ni Ni • EWG EWG Yamamoto, J. Am. Chem. Soc., 2000, 122, 10776. [32! + 22" ] Cycloadditions: Metallocyclobutanes Z H Z H D Z Z Ni(AN)2 A B 13% 87% D Z D + H D H H D Z H D Z Z H Z H (AN)2 = bisacrylonitrile H + Z D H H H H D D H C + Z D D 5% 61% + A B Z 4% 30% Mechanism: Z NiLn Ln NiLn Z Z Ni Z #-hydride elimination Indicated bond in SM has one of the highest strain energies known (47.4 kcal/mol) Z Z Noyori, J. Am. Chem. Soc., 96, 1974, 634. [32! + 22" ] Cycloadditions: Methylenecyclopropane 1.33D D D D + EtO2C Ni(an)2 CO2Et 0.08D 1.34D 1.34D + PhH, 60 oC D EtO2C CO2Et 38 2D CO2Et 62 Two possible pathways Noyori, Tetrahedron Lett., 1978, 4823. distal attack X Y "Naked" nickel catalysts such as Ni(COD)2 favor proximal ring opening X Y M 1 3 CO2Et 2D Phosphine ligands result in a preference for distal ring opening 2 proximal attack X Y Palladium reacts exclusively at the distal position M Y X Binger, Top. Curr. Chem., 1987, 135, 77. Mechanism (proximal attack): 1 LnNi E E 3 1 3 E 3 1 LnNi E LnNi E E E E Binger, Top. Curr. Chem., 1983, 116, 1. Intramolecular [ 32! + 22" ] Cycloadditions With Methylenecyclopropanes Synthesis of 13-Acetoxymodhephane Me M CO2Me AcO CO2Me Me 13-Acetoxymodhephane MeO2C catalyst (20 mol%) temp. yield Ni(COD)2, PPh3 110 oC 74% (PPh3)2PdCl2, DIBAL 130 oC 98% Nakamura, J.Chem. Soc., Chem. Comm., 1988, 1112. Selection of metal catalyst governs regiochemical product Me 10 mol% Pd2(dba)3 Ni 40 mol% (iPrO)3P PhMe, 110 oC Me Pd MeO2C CO2Me CO2Me CO2Me 59% CO2Me CO2Me 40 mol% Ni(COD)2 Me PhMe, 0 oC CO2Me CO2Me 50% CO2Me Motherwell, Tetrahedron Lett., 1989, 7107. [ 22" + 22" + 22" ] Cycloadditions: Alkyne Cyclotrimerizations Although in principle thermal [ 2 + 2 + 2 ] cycloadditions are symmetry allowed, the entropic barriers associated with bringing three reaction partners together and enthalpic activation energy contributions mitigate against such processes The use of a transition metal catalyst enables entropic constraints to be circumvented by coordination of the reaction partners to the metal complex in a stepwise process R1 R2 metal catalyst R3 R6 R1, R2 R5, R6 (Ni, Co, Pd, Cr, Rh, Fe, or Ta) R3, R4 R4 R5 Intermolecular reaction suffers from chemo- and regioselectivity problems R1 R R R (Ni, Rh, or Co) R2 R1 metal catalyst + ( )n complex product mixture n = 2-5 ( )n R2 R Partially intramolecular cyclotrimerization has become a very useful synthetic procedure [ 22! + 22! + 22! ] Cyclotrimerizations: Mechanism and Scope Modifications of Cyclotrimerization General Mechanism: R1 R2 R1 + R3 R4 MLn R4 R1 MLn-2 MLn-2 R4 R5 N R5 R6 R5 N C N R2 R6 C MLn-2 R6 R4 O Ln-2 M R5 R3 R4 O R3 R5 R2 C R1 O R3 R1 R6 O R6 R4 R5 N R6 N R2 R1 R2 R2 R5 O R5 R4 R3 O R3 R3 N R4 R4 R1 R6 R5 C + R5 R2 R5 R2 R3 R2 R3 R4 R1 R4 R5 R1 R5 R1 MLn-2 R3 R5 R6 R1 O R1 R2 R3 N R6 R6 R2 R3 R3 R4 R5 R5 R1 R1 R4 R2 R1 R3 R2 R2 R3 R2 R6 R4 N O R5 R4 Lautens,Chem. Rev., 96, 1996, 49. [ 22! + 22! + 22! ] Cycloadditions: Semi-Intramolecular Alkyne Cyclotrimerizations Asymmetric Synthesis of Isoindoline and Isoquinoline Derivatives H N + 8 mol% Ni(COD)2 20 mol% L* Tr TMS N THF, 23 oC TMS H TMS TMS Ph2P L* Yield ee (S, S)-BPPM 92% 60% (R)-(S)-BPPFA 52% 73% + N Tr H OtBu Me NMe2 PPh2 N O H Tr * PPh2 Fe (S, S)-BPPM PPh2 (R)-(S)-BPPFA 8 mol% Ni(COD)2 40 mol% L* THF, N * 23 oC Tr H L* Yield ee (S, S)-BPPM 42% 6% (S)-MeO-MOP 62% 54% OMe PPh2 (S)-MeO-MOP Mori, J. Org. Chem., 59, 1994, 6133. [ 2 + 2 + 2 ] Cycloadditions: Alkynyl Enone / Alkene Cyclotrimerizations Montgomery (w/ Jeongbeob Seo) O Ph Ph Ph Ph O Ni(COD)2 or O O Ph PPh3 Ph Ph H Ph single stereoisomer from either E or Z starting material (99% and 63% yields respectively) A Reaction sets two rings and four contiguous stereocenters with complete stereoselectivity Unusual chemoselectivity for alkene over alkyne in [ 2+ 2 + 2 ] cyclotrimerization Simple enones Me Me O O O Ph Ni(COD)2 Ph O Ph PPh3 Ph A + 23% H 75% Me Me O O Ph Me O Ni(COD)2 H O O O + PPh3 Ph H Ph 68% combined 4 : 1 dr H Montgomery, J. Am. Chem. Soc., 1999, 121, 477. [ 2 + 2 + 2 ] Cycloadditions: Alkynyl Enone / Alkene Cyclotrimerizations Mechanism O O R1 L L Ni 1 R2 R3 Ni(COD)2 R R3 R1 H PPh3 A R1 O L Ni R2 L R3 H O O R2 R1 R3 Ni(COD)2 L B L Ni R1 3 R R1 H PPh3 C R4 O Products to not isomerize or epimerize under standard catalytic reaction conditions R4 metallacycles and a kinetic preference for addition of B or C to the simple enone to explain R1 R4 L O Authors propose preequilibrium between nickel O Ni R2 L R3 H R1 O O R2 H R3 lack of reaction stereospecificity Montgomery, J. Am. Chem. Soc., 1999, 121, 477. [ 3 + 2 ] and [ 2 + 1 ] Cycloadditions: Diverse Reaction Manifolds From a Common Nickel Metallocycle O O R1 Ni0 R2 L E E+X- R2 R2 H E+X- = MeI, RCHO, H2O L Ni R1 OH R1 Reaction conditions chemoselect for nickel enolate or vinyl nickel moiety [ 3 + 2 ] adduct R1 O O O2 H L = TMEDA R2 TMEDA suppresses [ 2 + 2 + 2 ] dimerization [ 2 + 1 ] adduct Montgomery, J. Am. Chem. Soc., 2000, 122, 6775. Mechanisms Ni N R1 N N O O R2 Ni N R1 O E+X- X Ni N R1 E R2 N N N Ni O R1 R2 E R2 O2 L + O Ni O O- R1 R2 R1 O OL + Ni O R1 O HO E O R1 R2 R2 R2 [ 22! + 22! + 22! ] Homo-Diels-Alder Cycloadditions First examples of Homo-Diels-Alder reaction + 205 oC O O O H O Ullman,Chem. ind. (London)., 1958, 1173. NC CN PhH CN reflux + NC "small amount" H O O 100% CN CN Blomquist, J. Am. Chem. Soc., 1958, 81, 667. CN CN Less activated olefins result in greatly diminished yields—acrylonitrile and norbornadiene (200 oC, 12h) gives only 12% yield Nickel catalysts greatly broaden scope and efficiency of HDA + EWG 10% Ni(COD)2 20% PPh3 Cl Cl EWG EWG Temp. Yield exo : endo COMe 80 oC 99% >20 : 1 CHO r.t. 58% 3:1 CN 80 oC 82% 4:1 SO2Ph r.t. 75% 1:1 SOPh r.t. 73% a: P(OPh)3 used instead of PPh3 >19 : 1a Lautens, J. Am. Chem. Soc., 1995, 117, 10276. Norbornadienes: [ 2 + 2 + 2 ] Vs. [ 2 + 2 ] Ni(COD)2 + Y X Ni PPh3 Y Ni Y L X X Highly electron-deficient olefins (e.g. N-phenylmaleimide) undergo [ 2 + 2 ] reaction L Y L Ni Y L More electron-rich olefins (e.g. methyl vinyl ketone) favor [ 2 + 2 + 2 ] pathway X X Ni L L Reaction pathway appears to be dependent upon coordination ability of the dienophile X Y Y X [ 2 + 2 ] adduct [ 2 + 2 + 2 ] adduct Lautens, J. Am. Chem. Soc., 1995, 117, 10276. [ 22! + 22! + 22! ] Homo-Diels-Alder Cycloadditions : Regio- and Stereoselectivity 2-Substituted Norbornadienes 13 mol% Ni(COD)2 24 mol% PPh3 MeO2C + Cl Cl MeO2C 94% exo : endo = 2.3 : 1 , 80 oC (para) CN CN 18 mol% Ni(COD)2 36 mol% PPh3 + OMe Cl Cl OMe , 80 oC (ortho) COMe COMe SiMe3 15 mol% Ni(COD)2 30 mol% P(OPh)3 + Cl CN 54% (80% one isomer) Cl , 80 oC SiMe3 (meta) CN 47% PPh3 gives mixture of [2 + 2 + 2] and [2 + 2] adducts Diene and dienophile substituents as well as ligands shown to have dramatic effect on selectivities Lautens, J. Am. Chem. Soc., 1995, 117, 10276. [ 22! + 22! + 22! ] Homo-Diels-Alder: Cyclic Vs. Acyclic Dienophiles Acyclic Dienophiles: exo-selective + 10 mol% Ni(COD)2 20 mol% PPh3 O Me Cl Cl , 80 99% >20 : 1 exo : endo oC COMe L L Ni H L EWG Ni EWG L H endo disfavored exo favored Cyclic Dienophiles: endo selective 10 mol% Ni(COD)2 20 mol% PPh3 56% + O Cl Cl H , 80 oC H endo only O H L H H H H H Ni L L O endo favored Ni H L O exo disfavored Lautens, J. Am. Chem. Soc., 1995, 117, 10276. [ 22! + 22! + 22! ] Homo-Diels-Alder: 7-Substituted Norbornadienes R R R + 20 mol% Ni(COD)2 40 mol% PPh3 + Cl Cl , 80 A MeOC oC COMe R B R COMe + C MeOC COMe R Yield A:B:C:D anti : syn exo : endo n-hexyl 83% 40 : 58 : 1.6 : 0.4 42 : 58 98 : 2 Ph 84% 54 : 45 : 0.8 : 0.2 55 : 45 99 : 1 Cl 60% 71 : 28 : 0.8 : 0.2 72 : 28 99 : 1 OCOPh 97% 80 : 20 : 0 : 0 80 : 20 100 : 0 OTIPS 90% 90 : 9 : 1 : 0 91 : 9 99 : 1 OMEM 89% 88 : 9 : 3 : 0 91 : 9 97 : 3 OtBu 95% 95 : 5 : 0 : 0 95 : 5 100 : 0 D Anti : syn selectivity increases as group electronegativity of 7-substituent increases Ab initio calculations indicate a shift of electron density from the anti-! olefin to the syn-! olefin as electronegativity increases Lautens, J. Am. Chem. Soc., 1995, 117, 6863. [ 44! + 22! ] Cycloadditions: Nickel-Catalyzed Diels-Alder Reactions Reversal of thermal reactivity Me Me 135 oC + CO2Me CO2Me Me Ni(acac)2, PPh3 Et3Al, 40 60% Me + 90% CO2Me oC 2:1 CO2Me Garratt, J. Chem. Soc., Chem. Comm, 1974, 251. Mechanism: Ni0 + NiII Ni0 -Ni0 NiII NiII Wender, J. Am. Chem. Soc., 1989, 111, 6432. [ 44! + 22! ] Cycloadditions: Nickel-Catalyzed Intramolecular Diels-Alder Reactions Alkyne and Allene Dienophiles Alkynes are typically poor dienophiles in the Diels-Alder reaction OTBS OTBS 10 mol% Ni(COD)2 Me TMS O H + 30 mol% P(o-biPh)3 25 oC, 11h Me OTBS H 10 mol% Ni(COD)2 Me >99% 2:1 dr Me H H Me 30 mol% P(o-biPh)3 25 oC, 11h + Me O TMS TMS O 98% >99:1 dr Wender, J. Am. Chem. Soc., 1989, 111, 6432. Transition metal catalysts make these processes facile and synthetically useful OMOM Me OTMS 3 steps Me TMSO MeO Steroidal, 20 mol% Ni(COD)2 Vitamin D derivatives 40 mol% P(OiC3HF6)3 C6H12, 80 oC MeO OMOM 90% one diastereomer Wender, J. Org.Chem., 1995, 60, 2962. Allenes: Catalyst-controlled chemocomplementarity H Me OTBS OTBS 5 mol% [Rh(COD)Cl]2 OTBS 48 mol% P(O-o-BiPh)3 10 mol% Ni(COD)2 30 mol% P(O-o-BiPh)3 THF, 45 oC THF, 25 oC • Me H Me Wender, J. Am. Chem. Soc., 1995, 117, 1843. [ 22! + 22! + 22! + 22! ] Cycloadditions: Cyclooctatetraene Synthesis First example by Reppe, has been used on an industrial scale Ni-Catalyst 4 CH(iPr)2 Ni Ni-Catalyst = NiBr2 / CaC2, Ni(acac)2, Ni(COT)2 2 Reppe, Leibigs Ann. Chem., 1948, 560, 1. CH(iPr)2 tom Dieck developed first method for regioselective cycloadditions with monosubstituted alkynes R4 cat. (dad)2Ni (dad)2Ni R major product R major product R R R CH2OH R R R R CH2OTol R R R R R R CH(CH3)OH CH2CO2Me R R R R tom Dieck, Chem. Ber., 1985, 118, 428. [ 44! + 44! ] Cycloadditions: Cyclooctadiene Synthesis Intermolecular Substituted butadiene dimerization X 10 mol% Ni(COD)2 X benzene Y X, Y = OSiMe3 (18d) 90% (24h) 70% X, Y = CO2Me Y X = H, Y = CO2Me (72h) 33% Waegell, Tetrahedron Lett. 1983, 24, 385. Use of butadiene results in significant [ 4 + 2 ] adduct Mechanism: Ni Ni Ln Ln "1,"3-anti bis-"1 H NiLn Ni L LnNi NiLn "3-bis syn Ni0 NiLn NiLn "3-bis anti H bis-"1 bis-"1 Conditions can be optimized to minimize vinylcyclohexene and divinylcyclobutane formation Wilke, ACIEE, 1988, 27, 185. [ 44! + 44! ] Cycloadditions: Intramolecular Cyclooctadiene Synthesis 3-atom tethers cis-fused H 11 mol% Ni(COD)2 33 mol% Ph3P EtO2C EtO2C PhMe, 60 4-atom tethers EtO2C oC 70% 19 : 1 cis : trans EtO2C H trans-fused MeO2C MeO2C 1:2 Ni(COD)2 : Ph3P H 82% 5 : 95 cis : trans H Note: other substrates give much lower selectivities Wender, J. Am. Chem. Soc., 1986, 108, 4678. Type I 10 mol% Ni(COD)2 20 mol% Ph3P Me Me 92% 3 : 97 cis : trans PhMe, 110 oC MeO2C MeO2C H Type II 20 mol% Ni(COD)2 40 mol% Ph3P TBSO 52% 1.3 : 1 dr TBSO PhMe, 110 oC Towards taxane skeleton Wender, Tetrahedron Lett., 1987, 28, 2221. [ 44! + 44! ] Cycloadditions: Enantioselective Total Synthesis of (+)-Asteriscanolide Me Me 1. isobutyric anhydride BrMg CHO 1. LAH 2. Swern 2. LDA 68% (2 steps) OH 57% O Darvon LAH OH red. 97% 98% ee Me Me Me 3. Li Me 4. Swern CO2H Me Me Me Red-Al Me SnMe3Cl 83% Me 64% (4 steps) O OH SnMe3 SnMe3 OH Me + Me O n-BuLi • CO2 Me Me PPh3, 90 oC Me 56% 67% Me Me O O O Ni(COD)2 Me Me O O O H Red-Al Me CuBr Me 74% H Me H Me Me BH3 THF Me PCC Me 48% H Me Wender, J. Am. Chem. Soc., 1988, 110, 5904. H H O Me (+)-Asteriscanolide [ 2 + 2 + 1 ] Cycloadditions: Cyclopentenone Synthesis R R3SiCN cat. Ni(COD)2 / L2 R X R H+ N X PhH, 8h O X SiR3 Ph Ph L2 = N N Ph Ph Representative examples Ph Ph O O O O Ph Me 60% Ph O N 38% 2 : 1 dr H 40% Ph Ph O O 41% Me O O EtO2C O EtO2C H 70% Me 58% >98 : 2 Buchwald, J. Org. Chem., 1996, 61, 4498. Nickel-Catalyzed "Zipper Annulation" of Conjugated Enynes R R R cat. Pd0 2 R R EWG EWG EWG cat. Ni0 2 52-89% PhMe, rt EWG EWG EWG = n-C6F13, PhCF2, n-C6H13CF2 Catalytic cycle Yamamoto, J. Am. Chem. Soc., 2000, 122, 1810. EWG EWG Ni Ni or EWG Ni Ni0 EWG EWG EWG EWG EWG Ni EWG