Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
2264_INS.qxd 2/6/02 11:56 AM Page 1 Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition © 2002 Prentice Hall CHAPTER 2 Class Width = 1 round up to next convenient number 2 Maximum data entry - Minimum data entry of Number of classes Midpoint = 1Lower class limit2 + 1Upper class limit2 Chebychev’s Theorem The portion of any data set lying within k standard deviations 1k 7 12 of the mean is at 1 least 1 - 2 . k Standard Score: z = x - m value - mean = s standard deviation 2 Class frequency Relative Frequency = Sample size Population Mean: m = = CHAPTER 3 f n Classical (or Theoretical) Probability: gx N P1E2 = gx n Sample Mean: x = Weighted Mean: x = Number of outcomes in E Total number of outcomes in sample space Empirical (or Statistical) Probability: g1x # w2 P1E2 = gw Mean for Grouped Data: x = g1x # f2 Frequency of event E Total frequency = f n Probability of a Complement: P1E¿2 = 1 - P1E2 n Range = 1Maximum entry2 - 1Minimum entry2 Probability of occurrence of both events A and B: P1A and B2 = P1A2 # P1B ƒ A2 Population Variance: s2 = P1A and B2 = P1A2 # P1B2 if A and B are independent g1x - m22 N Probability of occurrence of either A or B or both: Population Standard Deviation: s = 2s2 = g1x - m22 C P1A or B2 = P1A2 + P1B2 - P1A and B2 N 2 Sample Variance: s = P1A or B2 = P1A2 + P1B2 if events are mutually exclusive. g1x - x22 n - 1 Sample Standard Deviation: s = 2s2 = g1x - x22 C n - 1 Permutations of n objects taken r at a time: nPr = Sample Standard Deviation for Grouped Data: s = g1x - x22 f C n - 1 n! , where r … n. 1n - r2! Distinguishable Permutations: n1 alike, n 2 alike, Á , nk alike: Empirical Rule (or 68-95-99.7 Rule) For data with a (symmetric) bell-shaped distribution n! n1! # n2! # n2! Á nk! 1. About 68% of the data lies between m - s and m + s. where n1 + n2 + n3 + Á + nk = n. 2. About 95% of the data lies between m - 2s and m + 2s. Combination of n objects taken r at a time: 3. About 99.7% of the data lies between m - 3s and m + 3s. nCr = n! 1n - r2!r! 2264_INS.qxd 2/6/02 11:56 AM Page 2 Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition © 2002 Prentice Hall CHAPTER 4 CHAPTER 6 Mean of a Discrete Random Variable: m = gxP1x2 s2 = g1x - m22P1x2 c- Confidence Interval for m : x - E 6 m 6 x + E s where E = zc if s is known and the population is 1n s normal or n Ú 30, and E = tc if the population is 1n Standard Deviation: s = 2s2 normal, s is unknown, and n 6 30. Variance of a Discrete Random Variable: Expected Value: E1x2 = m = gxP1x2 Binomial Probability of x successes in n trials: P1x2 = nCxpxq n - x = n! pxqn - x 1n - x2!x! Population Parameters of a Binomial Distribution: Mean: m = np Variance: s2 = npq Standard Deviation: s = 1npq zcs 2 b E Point Estimate for p, the population proportion of x n = successes: p n Minimum Sample Size to Estimate m : n = a c- Confidence Interval for Population Proportion p n - E 6 p 6 p n + E, (when np Ú 5 and nq Ú 52: p where E = zc Geometric Distribution: n qn p . B n zc 2 b E The probability that the first success will occur on trial number x is P1x2 = p1q2x - 1, where q = 1 - p. n qn a Minimum Sample Size to Estimate p : n = p Poisson Distribution: c- Confidence Interval for Population Variance s2 : The probability of exactly x occurrences in an interval is mxe -m P1x2 = , where e L 2.71828 . x! 1n - 12s2 Standard Score, or z- Score: x - m value - mean = z = s standard deviation Transforming a z- Score to an x- Value: x = m + zs sx = z = s 1n x - mx x - m = sx s> 1n 1n - 12s2 xL2 c- Confidence Interval for Population Standard Deviation s: CHAPTER 5 mx = m xR2 6 s2 6 Central Limit Theorem (Mean of the Sample Means) Central Limit Theorem (Standard Error) Central Limit Theorem C 1n - 12s2 xR2 6 s 6 C 1n - 12s2 xL2 2264_INS.qxd 2/6/02 11:56 AM Page 3 Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition © 2002 Prentice Hall CHAPTER 7 t = x - m z- Test for a Mean m : z = , for s known with a s> 1n normal population, or for n Ú 30 . t- Test for a Mean m : t = x - m s> 1n , for s unknown, x normally distributed, and n 6 30 . 1d.f. = n - 12 Note: n1p, n1q , n2p, and n2q must be at least 5. z = x = n 22 - 1p1 - p22 n1 - p 1p B 1 1 + b n1 n2 p qa , where p = 1n - 12s2 1d.f. = n - 12 s2 Correlation Coefficient: r = ngxy - 1gx21gy2 2ngx2 - 1gx22 2n gy2 - 1gy22 CHAPTER 8 t- Test for the Correlation Coefficient: Two-Sample z- Test for the Difference Between Means: t = (Independent samples; n1 and n2 Ú 30 or normally distributed populations) z = 1x1 - x22 - 1m1 - m 22 sx1 - x2 , where sx1 - x2 s21 s22 = + B n1 n2 Two-Sample t- Test for the Difference Between Means: (Independent samples from normally distributed populations, n1 or n2 6 30 ) t= 1x1 - x22 - 1m1 - m 22 C 1n1 - (d.f. = n - 2 ) 1 - r2 Bn - 2 where m = ngxy - 1gx21gy2 ngx2 - 1gx22 b = y - mx = and gy gx - m n n Coefficient of Determination: If population variances are equal, d.f. = n1 + n2 - 2 12s21 r Equation of a Regression Line: yn = mx + b sx1 - x2 and sx1 - x2 = x1 + x2 . n1 + n2 CHAPTER 9 Chi-Square Test for a Variance or Standard Deviation: 2 n1gd22 - 1gd22 gd , sd = , n C n1n - 12 Two-Sample z- Test for the Difference Between Proportions: n - p p 2pq>n sd> 1n , where d = and d.f. = n - 1. z- Test for a Proportion p (when np Ú 5 and nq Ú 52 : z = d - md + 1n2 - 12s22 # n1 + n2 - 2 1 1 + . B n1 n2 r2 = g1yni - y22 explained variation total variation = g1yi - y22 Standard Error of Estimate: se = C g1yi - yni22 n - 2 If population variances are not equal, d.f. is the smaller s21 s22 + . of n1 - 1 or n2 - 1 and sx1 - x2 = B n1 n2 c- Prediction Interval for y is yn - E 6 y 6 yn + E, where t- Test for the Difference Between Means: (Dependent samples) E = tcse C 1 + n1x0 - x22 1 + . n ngx2 - 1gx22 1d.f. = n - 22 2264_INS.qxd 2/6/02 11:56 AM Page 4 Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition © 2002 Prentice Hall CHAPTER 10 Chi-Square: x 2 = g CHAPTER 11 1O - E22 Test Statistic for Sign Test: When n 7 25, E z = Goodness-of-Fit Test: d.f. = k - 1 Test of Independence: Two-Sample F- Test for Variances: Ú s222 F = s21 s22 1d.f.N = n1 - 1, and d.f.D = n2 - 12 One-Way Analysis of Variance Test: gx 2 gni a xi b MSB SSB N , where MSB = F = = MSW k - 1 k - 1 and MSW g1ni - 12s2i SSW = = . N - k N - k 0.51n , where x is the smaller number of + or - signs and n is the total number of + and signs. d.f. = 1no. of rows - 121no. of columns - 12 1s21 1x + 0.52 - 0.5n When n … 25, the test statistic is the smaller number of + or - signs. R - mR , sR where R = sum of the ranks for the smaller sample, Test Statistic for Wilcoxon Rank Sum Test: z = mR = n11n1 + n2 + 12 2 , sR = B n1n21n1 + n2 + 12 12 , and n1 … n2 . Test Statistic for the Kruskal-Wallis Test: Given three or more independent samples, the test statistic for the Kruskal-Wallis test is ( d.f.N = k - 1, d.f.D = N - k ) H = R2k R21 R22 12 a + + Á + b - 31N + 12. N1N + 12 n1 n2 nk 1d.f. = k - 12 The Spearman Rank Correlation Coefficient: rs = 1 - 6 gd2 n1n2 - 12 2264_INS.qxd 2/6/02 11:56 AM Page 5 Table 4 —Standard Normal Distribution Area z z z –3.4 –3.3 –3.2 –3.1 –3.0 –2.9 –2.8 –2.7 –2.6 –2.5 –2.4 –2.3 –2.2 –2.1 –2.0 –1.9 –1.8 –1.7 –1.6 –1.5 –1.4 –1.3 –1.2 –1.1 –1.0 –0.9 –0.8 –0.7 –0.6 –0.5 –0.4 –0.3 –0.2 –0.1 –0.0 0 .09 .0002 .0003 .0005 .0007 .0010 .0014 .0019 .0026 .0036 .0048 .0064 .0084 .0110 .0143 .0183 .0233 .0294 .0367 .0455 .0559 .0681 .0823 .0985 .1170 .1379 .1611 .1867 .2148 .2451 .2776 .3121 .3483 .3859 .4247 .4641 .08 .0003 .0004 .0005 .0007 .0010 .0014 .0020 .0027 .0037 .0049 .0066 .0087 .0113 .0146 .0188 .0239 .0301 .0375 .0465 .0571 .0694 .0838 .1003 .1190 .1401 .1635 .1894 .2177 .2483 .2810 .3156 .3520 .3897 .4286 .4681 .07 .0003 .0004 .0005 .0008 .0011 .0015 .0021 .0028 .0038 .0051 .0068 .0089 .0116 .0150 .0192 .0244 .0307 .0384 .0475 .0582 .0708 .0853 .1020 .1210 .1423 .1660 .1922 .2206 .2514 .2843 .3192 .3557 .3936 .4325 .4721 .06 .0003 .0004 .0006 .0008 .0011 .0015 .0021 .0029 .0039 .0052 .0069 .0091 .0119 .0154 .0197 .0250 .0314 .0392 .0485 .0594 .0722 .0869 .1038 .1230 .1446 .1685 .1949 .2236 .2546 .2877 .3228 .3594 .3974 .4364 .4761 .05 .0003 .0004 .0006 .0008 .0011 .0016 .0022 .0030 .0040 .0054 .0071 .0094 .0122 .0158 .0202 .0256 .0322 .0401 .0495 .0606 .0735 .0885 .1056 .1251 .1469 .1711 .1977 .2266 .2578 .2912 .3264 .3632 .4013 .4404 .4801 Critical Values Level of Confidence c 0.80 0.90 0.95 0.99 .04 .0003 .0004 .0006 .0008 .0012 .0016 .0023 .0031 .0041 .0055 .0073 .0096 .0125 .0162 .0207 .0262 .0329 .0409 .0505 .0618 .0749 .0901 .1075 .1271 .1492 .1736 .2005 .2296 .2611 .2946 .3300 .3669 .4052 .4443 .4840 .03 .0003 .0004 .0006 .0009 .0012 .0017 .0023 .0032 .0043 .0057 .0075 .0099 .0129 .0166 .0212 .0268 .0336 .0418 .0516 .0630 .0764 .0918 .1093 .1292 .1515 .1762 .2033 .2327 .2643 .2981 .3336 .3707 .4090 .4483 .4880 c zc 1.28 1.645 1.96 2.575 −z c z z=0 zc .02 .0003 .0005 .0006 .0009 .0013 .0017 .0024 .0033 .0044 .0059 .0078 .0102 .0132 .0170 .0217 .0274 .0344 .0427 .0526 .0643 .0778 .0934 .1112 .1314 .1539 .1788 .2061 .2358 .2676 .3015 .3372 .3745 .4129 .4522 .4920 .01 .0003 .0005 .0007 .0009 .0013 .0018 .0025 .0034 .0045 .0060 .0080 .0104 .0136 .0174 .0222 .0281 .0352 .0436 .0537 .0655 .0793 .0951 .1131 .1335 .1562 .1814 .2090 .2389 .2709 .3050 .3409 .3783 .4168 .4562 .4960 .00 .0003 .0005 .0007 .0010 .0013 .0019 .0026 .0035 .0047 .0062 .0082 .0107 .0139 .0179 .0228 .0287 .0359 .0446 .0548 .0668 .0808 .0968 .1151 .1357 .1587 .1841 .2119 .2420 .2743 .3085 .3446 .3821 .4207 .4602 .5000 2264_INS.qxd 2/6/02 11:56 AM Page 6 Table 4 —Standard Normal Distribution (continued) Area z 0 z 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 .00 .5000 .5398 .5793 .6179 .6554 .6915 .7257 .7580 .7881 .8159 .8413 .8643 .8849 .9032 .9192 .9332 .9452 .9554 .9641 .9713 .9772 .9821 .9861 .9893 .9918 .9938 .9953 .9965 .9974 .9981 .9987 .9990 .9993 .9995 .9997 z .01 .5040 .5438 .5832 .6217 .6591 .6950 .7291 .7611 .7910 .8186 .8438 .8665 .8869 .9049 .9207 .9345 .9463 .9564 .9649 .9719 .9778 .9826 .9864 .9896 .9920 .9940 .9955 .9966 .9975 .9982 .9987 .9991 .9993 .9995 .9997 .02 .5080 .5478 .5871 .6255 .6628 .6985 .7324 .7642 .7939 .8212 .8461 .8686 .8888 .9066 .9222 .9357 .9474 .9573 .9656 .9726 .9783 .9830 .9868 .9898 .9922 .9941 .9956 .9967 .9976 .9982 .9987 .9991 .9994 .9995 .9997 .03 .5120 .5517 .5910 .6293 .6664 .7019 .7357 .7673 .7967 .8238 .8485 .8708 .8907 .9082 .9236 .9370 .9484 .9582 .9664 .9732 .9788 .9834 .9871 .9901 .9925 .9943 .9957 .9968 .9977 .9983 .9988 .9991 .9994 .9996 .9997 .04 .5160 .5557 .5948 .6331 .6700 .7054 .7389 .7704 .7995 .8264 .8508 .8729 .8925 .9099 .9251 .9382 .9495 .9591 .9671 .9738 .9793 .9838 .9875 .9904 .9927 .9945 .9959 .9969 .9977 .9984 .9988 .9992 .9994 .9996 .9997 .05 .5199 .5596 .5987 .6368 .6736 .7088 .7422 .7734 .8023 .8289 .8531 .8749 .8944 .9115 .9265 .9394 .9505 .9599 .9678 .9744 .9798 .9842 .9878 .9906 .9929 .9946 .9960 .9970 .9978 .9984 .9989 .9992 .9994 .9996 .9997 .06 .5239 .5636 .6026 .6406 .6772 .7123 .7454 .7764 .8051 .8315 .8554 .8770 .8962 .9131 .9278 .9406 .9515 .9608 .9686 .9750 .9803 .9846 .9881 .9909 .9931 .9948 .9961 .9971 .9979 .9985 .9989 .9992 .9994 .9996 .9997 .07 .5279 .5675 .6064 .6443 .6808 .7157 .7486 .7794 .8078 .8340 .8577 .8790 .8980 .9147 .9292 .9418 .9525 .9616 .9693 .9756 .9808 .9850 .9884 .9911 .9932 .9949 .9962 .9972 .9979 .9985 .9989 .9992 .9995 .9996 .9997 .08 .5319 .5714 .6103 .6480 .6844 .7190 .7517 .7823 .8106 .8365 .8599 .8810 .8997 .9162 .9306 .9429 .9535 .9625 .9699 .9761 .9812 .9854 .9887 .9913 .9934 .9951 .9963 .9973 .9980 .9986 .9990 .9993 .9995 .9996 .9997 .09 .5359 .5753 .6141 .6517 .6879 .7224 .7549 .7852 .8133 .8389 .8621 .8830 .9015 .9177 .9319 .9441 .9545 .9633 .9706 .9767 .9817 .9857 .9890 .9916 .9936 .9952 .9964 .9974 .9981 .9986 .9990 .9993 .9995 .9997 .9998 2264_INS.qxd 2/6/02 11:56 AM Page 7 Table 5—t-Distribution 1 α 2 −t α t c-confidence interval d.f. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 q Level of confidence, c One tail, Two tails, t Left-tailed test 0.50 0.25 0.50 1.000 .816 .765 .741 .727 .718 .711 .706 .703 .700 .697 .695 .694 .692 .691 .690 .689 .688 .688 .687 .686 .686 .685 .685 .684 .684 .684 .683 .683 .674 α t −t t 0.80 0.10 0.20 3.078 1.886 1.638 1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363 1.356 1.350 1.345 1.341 1.337 1.333 1.330 1.328 1.325 1.323 1.321 1.319 1.318 1.316 1.315 1.314 1.313 1.311 1.282 0.90 0.05 0.10 6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812 1.796 1.782 1.771 1.761 1.753 1.746 1.740 1.734 1.729 1.725 1.721 1.717 1.714 1.711 1.708 1.706 1.703 1.701 1.699 1.645 Right-tailed test 0.95 0.025 0.05 12.706 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 2.120 2.110 2.101 2.093 2.086 2.080 2.074 2.069 2.064 2.060 2.056 2.052 2.048 2.045 1.960 0.98 0.01 0.02 31.821 6.965 4.541 3.747 3.365 3.143 2.998 2.896 2.821 2.764 2.718 2.681 2.650 2.624 2.602 2.583 2.567 2.552 2.539 2.528 2.518 2.508 2.500 2.492 2.485 2.479 2.473 2.467 2.462 2.326 0.99 0.005 0.01 63.657 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250 3.169 3.106 3.055 3.012 2.977 2.947 2.921 2.898 2.878 2.861 2.845 2.831 2.819 2.807 2.797 2.787 2.779 2.771 2.763 2.756 2.576 t 1 α 2 −t t t Two-tailed test 2264_INS.qxd 2/6/02 11:56 AM Page 8 Table 6— Chi-Square Distribution 1 α 2 α χ2 χ2 χ2 χ2 L Right tail Degrees of freedom 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 40 50 60 70 80 90 100 1 α 2 χ2 R Two tails 0.995 — 0.010 0.072 0.207 0.412 0.676 0.989 1.344 1.735 2.156 2.603 3.074 3.565 4.075 4.601 5.142 5.697 6.265 6.844 7.434 8.034 8.643 9.262 9.886 10.520 11.160 11.808 12.461 13.121 13.787 20.707 27.991 35.534 43.275 51.172 59.196 67.328 0.99 — 0.020 0.115 0.297 0.554 0.872 1.239 1.646 2.088 2.558 3.053 3.571 4.107 4.660 5.229 5.812 6.408 7.015 7.633 8.260 8.897 9.542 10.196 10.856 11.524 12.198 12.879 13.565 14.257 14.954 22.164 29.707 37.485 45.442 53.540 61.754 70.065 0.975 0.001 0.051 0.216 0.484 0.831 1.237 1.690 2.180 2.700 3.247 3.816 4.404 5.009 5.629 6.262 6.908 7.564 8.231 8.907 9.591 10.283 10.982 11.689 12.401 13.120 13.844 14.573 15.308 16.047 16.791 24.433 32.357 40.482 48.758 57.153 65.647 74.222 0.95 0.004 0.103 0.352 0.711 1.145 1.635 2.167 2.733 3.325 3.940 4.575 5.226 5.892 6.571 7.261 7.962 8.672 9.390 10.117 10.851 11.591 12.338 13.091 13.848 14.611 15.379 16.151 16.928 17.708 18.493 26.509 34.764 43.188 51.739 60.391 69.126 77.929 0.90 0.10 0.05 0.025 0.01 0.005 0.016 2.706 3.841 5.024 6.635 7.879 0.211 4.605 5.991 7.378 9.210 10.597 0.584 6.251 7.815 9.348 11.345 12.838 1.064 7.779 9.488 11.143 13.277 14.860 1.610 9.236 11.071 12.833 15.086 16.750 2.204 10.645 12.592 14.449 16.812 18.548 2.833 12.017 14.067 16.013 18.475 20.278 3.490 13.362 15.507 17.535 20.090 21.955 4.168 14.684 16.919 19.023 21.666 23.589 4.865 15.987 18.307 20.483 23.209 25.188 5.578 17.275 19.675 21.920 24.725 26.757 6.304 18.549 21.026 23.337 26.217 28.299 7.042 19.812 22.362 24.736 27.688 29.819 7.790 21.064 23.685 26.119 29.141 31.319 8.547 22.307 24.996 27.488 30.578 32.801 9.312 23.542 26.296 28.845 32.000 34.267 10.085 24.769 27.587 30.191 33.409 35.718 10.865 25.989 28.869 31.526 34.805 37.156 11.651 27.204 30.144 32.852 36.191 38.582 12.443 28.412 31.410 34.170 37.566 39.997 13.240 29.615 32.671 35.479 38.932 41.401 14.042 30.813 33.924 36.781 40.289 42.796 14.848 32.007 35.172 38.076 41.638 44.181 15.659 33.196 36.415 39.364 42.980 45.559 16.473 34.382 37.652 40.646 44.314 46.928 17.292 35.563 38.885 41.923 45.642 48.290 18.114 36.741 40.113 43.194 46.963 49.645 18.939 37.916 41.337 44.461 48.278 50.993 19.768 39.087 42.557 45.722 49.588 52.336 20.599 40.256 43.773 46.979 50.892 53.672 29.051 51.805 55.758 59.342 63.691 66.766 37.689 63.167 67.505 71.420 76.154 79.490 46.459 74.397 79.082 83.298 88.379 91.952 55.329 85.527 90.531 95.023 100.425 104.215 64.278 96.578 101.879 106.629 112.329 116.321 73.291 107.565 113.145 118.136 124.116 128.299 82.358 118.498 124.342 129.561 135.807 140.169