Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 9 - Polarization Gabriel Popescu University of Illinois at Urbana‐Champaign y p g Beckman Institute Quantitative Light Imaging Laboratory Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical Imaging Electrical and Computer Engineering, UIUC ECE 460 – Optical Imaging Polarization The x‐y components of the field can be expressed via a 2D y p p “Jones” vector: i Ax e Ex J i E y Ay e x y (9 1) (9.1) Time variation: Time variation: Ex Ax cos(t x ) E y Ay cos((t y ) Chapter 9: Polarization (9.2) 2 ECE 460 – Optical Imaging Polarization Eliminate time: Ex Ax cos t cos x sin t sin x E y Ay sin t sin y cos t cos y (9.3) Take as exercise to prove that the trajectory of the E‐field is: 2 Ey2 2 Ex E y Ex 2 cos sin 2 2 Ax Ay Ax Ay (9.4) where y x Chapter 9: Polarization 3 ECE 460 – Optical Imaging Polarization y This is an ellipse: p θ x In general, it’s rotated by angle θ This is what we would “see” looking straight at the incoming beam There are few particular cases: a) Linear polarization: Linear polarization: 0, 0 2 Ex E y 0 line Ax Ay Chapter 9: Polarization 4 ECE 460 – Optical Imaging Polarization b)) Circular polarization: p Ax Ay 2 clockwise 2 clockwise 2 E x 2 E y 2 A2 2 c)) Straight ellipse: Ax Ay Chapter 9: Polarization 5 Jones Calculus for Birefringent Optical Systems Principles of Optical Imaging Electrical and Computer Engineering, UIUC ECE 460 – Optical Imaging Introduction ABCD matrices told us about amplitude distribution on p propagation Jones “calculus” deals with polarization changes for polarization sensitive optical elements l i ti iti ti l l t input output ? polarizes axis Direfringent crystal along lines cc-axis axis along vector (uniaxial) Jones Calculus 7 ECE 460 – Optical Imaging Introduction Jones “calculus” developed around 1940 p Based on 2x2 matrices (similat to ABCD) Need 2 to describe Z polarization Light travels 1 of 2 tranverse normal modes Birefringent crystals play role because two modes travel at different phase velocities different phase velocities Uniaxials simple – c‐axis in plate surface Jones Calculus 8 ECE 460 – Optical Imaging Retardation Plates (Waveplates) Retardation Plates (Waveplates) Change polarization state g p Assumption: no reflections at surface of elements (can use anti‐reflection cratings) Use Jones matrices discussed before 1 E V E ( x, y, z )e j (t kz ) cc 2 Slow variation O.K. describes polarization l i ti Jones Calculus Vx 2 2 ; V V x y 1 Vy 9 ECE 460 – Optical Imaging Retardation Plates (Waveplates) Retardation Plates (Waveplates) E.g. g V x‐polarized x 1 Vy 0 1 1 j 2 y‐polarized Vx 0 Vy 1 1 1 2 j Jones Calculus 10 ECE 460 – Optical Imaging Retardation Plates (Waveplates) Retardation Plates (Waveplates) x,y,z laboratory frame of reference f – “fast” axis s – “slow” axis ns n f ff,s,z sz crystal frame of reference Jones Calculus 11 ECE 460 – Optical Imaging Retardation Plates (Waveplates) Retardation Plates (Waveplates) cos V f sin From before Vs just inside the crystal sin Vx cos Vy R ( ) just outside the crystal Vs & Vf propagate independently in the crystal j kL After a distance L: Vs ' Vs e jn s 0 Vf ' Vf e Rewrite: Vs ' Vs 1 1 j ( ns n f ) k0 L j ( ns n f ) k0 L e 2 e 2 Vf ' Vf Jones Calculus jn f k0 L 1 1 j ( ns n f ) k0 L j ( ns n f ) k0 L e 2 e 2 12 ECE 460 – Optical Imaging Retardation Plates (Waveplates) Retardation Plates (Waveplates) 1 (ns n f )k0 L Define (ns n f )k0 L 2 j Vs ' j e 2 0 Vs j Vs e e W0 Vf Vf j V f ' 0 2 e W0 ‐ describes birefringent medium To get “output”, return to lab frame of reference Jones Calculus 13 ECE 460 – Optical Imaging Retardation Plates (Waveplates) Retardation Plates (Waveplates) Vx ' cos sin Vs ' Vs ' R( ) Vy ' sin cos V f ' V f ' Vx ' Vx R( ) W0 R( ) Vy ' Vy order of doing products of matrices Note: each matrix is unitary R ( ) 1 Polarization remain orthogonal Polarization remain orthogonal Jones Calculus 14 ECE 460 – Optical Imaging Polarizers x‐axis Px e j p y‐axis Py e j p 1 0 0 0 0 0 0 1 p ‐ phase change phase change through polarizer ? Vx ' Vx R( ) P0 R( ) Vy ' Vy Jones Calculus 15 ECE 460 – Optical Imaging Half (1/2) Wave Plate Half (1/2) Wave Plate L e s j 2 f Jones Calculus 2 j y x (ns n f ) W R ( ) W0 R ( ) cos sin j 0 cos sin 0 j sin cos sin cos cos sin cos sin j sin cos s in cos cos 2 sin 2 2sin cos j 2 2 2sin cos sin cos 16 ECE 460 – Optical Imaging ½ Wave Plate ½ Wave Plate cos 2 W j sin 2 sin 2 cos 2 rotates a plane of rotates a plane of Polarization by 2 x Ψ angle between lab g and crystal frames Another important factor is the transmission through the element T E' E Jones Calculus 2 2 2 Vx ' Vy ' 2 Vx Vy 2 2 17 ECE 460 – Optical Imaging ½ Wave Plate ½ Wave Plate E.g. g 1 input p 0 Vx ' cos 2 j sin 2 Vy ' sin 2 1 cos 2 0 j o cos 2 0 sin 2 if 45 1 Just get net polarization rotation cos 2 2 sin 2 2 1 T 1 Jones Calculus 18 ECE 460 – Optical Imaging ½ Wave Plate ½ Wave Plate Jones Calculus 19 ECE 460 – Optical Imaging ½ Wave Plate ½ Wave Plate E.g. g 1 1 input p j 2 Vx ' cos 2 Vy ' sin 2 sin 2 1 1 j cos 2 j sin 2 2 sin 2 j cos 2 cos 2 j 2 1 T ((cos 2 j sin i 2 )(cos )( 2 j sin i 2 ) (sin ( i 2 j cos 2 )(sin )( i 2 j cos 2 ) 2 1 (cos 2 2 sin 2 2 cos 2 2 sin 2 2 ) 1 2 Is the output still circulary polarized? Depends on Ψ Depends on Ψ Jones Calculus 20 ECE 460 – Optical Imaging ½ Wave Plate ½ Wave Plate Choose 4 Vx ' j j 1 1 j V ' 1 2 2 y (1) still circulary polarized ( ) reverses sense of rotation (2) (3) for , get elliptical polarization! 4 Jones Calculus 21 ECE 460 – Optical Imaging ¼ Wave Plate ¼ Wave Plate e 2 j L 4 cos 4 4 (ns n f ) j sin Assume Ψ= 450: 4 1 (1 j ) 2 j 4 1 1 e 1 W R (45o ) W0 R (45o ) 2 1 1 2 0 1 j 4 1 j 1 j e 1 1 j j 2 Jones Calculus 0 1 1 1 1 j 4 e 22 ECE 460 – Optical Imaging ¼ Wave Plate ¼ Wave Plate j Vx 1 Vx ' e 4 1 j 1 E.g. ; 1 j 1 ' V V 0 2 y y 1 j j 4 1 e 2 j j j 1 e 4 j 0 2 1 1 j j RCP Vx 1 Vx ' e 4 1 j 1 Eg. Eg. ; 1 j 1 V V ' j 2 y y 1 j j 4 0 e 2 1 Jones Calculus j j j 1 1 e 4 0 j 2 j 2 2 2 2 j y‐polarized 23 ECE 460 – Optical Imaging ¼ Wave Plate ¼ Wave Plate Jones Calculus 24 ECE 460 – Optical Imaging Waveplates and Polarizers Waveplates and Polarizers Jones Calculus 25 ECE 460 – Optical Imaging Waveplates and Polarizers Waveplates and Polarizers j 1 1 1 e 2 o o W R(45 ) W0 R (45 ) 2 1 1 0 cos 2 2 2 j sin 2 1 Px W Px 0 1 0 Jones Calculus j sin cos 2 2 cos j sin 2 2 j sin 2 cos 2 cos j sin i 0 2 2 1 0 0 j sin cos 2 2 cos 0 0 cos 2 2 0 j sin 0 0 2 0 1 1 1 1 j e 2 0 0 0 0 26 ECE 460 – Optical Imaging Waveplates and Polarizers Waveplates and Polarizers Case I: unpolarized light p g Vx 1 1 1 V 2 y Vx ' 1 cos 1 0 cos 2 2 linearly polarized: obvious !! ' V 1 2 y 0 0 0 2 T Jones Calculus Vx ' Vy ' 2 Vx Vy 2 2 1 cos 2 2 2 ½ lost at first polarizer! 27 ECE 460 – Optical Imaging Waveplates and Polarizers Waveplates and Polarizers Case II: Vx 1 Vy 0 Vx ' cos 1 0 cos 2 2 0 Vy ' 0 0 0 T cos 2 2 Jones Calculus 28 ECE 460 – Optical Imaging Waveplates and Polarizers Waveplates and Polarizers Case III: Vx 1 1 j V 2 y Vx ' 1 cos 1 0 1 cos 2 2 j 2 2 Vy ' 0 0 0 1 2 T cos 2 2 For ½ wave plates, For ½ wave plates T 0 Jones Calculus 29 ECE 460 – Optical Imaging Birefringent Plate between Crossed Polarizers d l i Ψ= 45 Ψ= 450: cos j sin 2 2 W R(45o ) W0 R (45o ) j sin cos 2 2 cos j sin 0 1 0 0 0 2 2 Py W Px 0 1 0 0 j sin j sin cos 2 2 2 Jones Calculus 0 0 30 ECE 460 – Optical Imaging Birefringent Plate between Crossed Polarizers d l i Case I: unpolarized light p g Vx 1 1 1 V 2 y 0 0 0 Vx ' 1 1 1 0 1 2 j sin 2 j sin Vy ' 2 2 1 2 T sin 2 2 Jones Calculus 31 ECE 460 – Optical Imaging Birefringent Plate between Crossed Polarizers d l i Case II: Vx 1 Vy 0 0 Vx ' V ' j sin y 2 0 0 1 0 0 j sin 2 T sin 2 2 Jones Calculus 32