Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Solutions Descriptive Statistics Sample 1 Mean Standard Deviation Sample Variance 2.2993 0.41905 0.1756 Sample 2 Mean Standard Deviation Sample Variance 2.29471 0.41496 0.1722 Sample 3 Mean Standard Deviation Sample Variance 2.25266 0.41457 0.17187 Sample 4 Mean Standard Deviation Sample Variance 2.17571 0.4113 0.16917 Estimating the Mean We start by computing the sample means: Sample count mean 1 100 2.2993 2 50 2.29471 3 20 2.25266 4 10 2.17571 We have the following critical z-scores for various levels of confidence: confidence critical z 0.8 1.28155 0.9 1.64485 0.95 1.95996 0.99 2.57583 0.93 1.81191 0.999 3.29053 Assuming that the variance is known, and equal to 0.16 (σ=0.4), we have the following confidence intervals for the four samples (the theoretical mean was 2.3, and all intervals include it) : confidence left #1 right #1 left #2 right #2 left #3 right #3 left #4 right #4 0.8 2.24804 2.35056 2.22222 2.36721 2.13803 2.36728 2.01361 2.33782 0.9 2.23351 2.3651 2.20167 2.38776 2.10553 2.39978 1.96765 2.38377 0.95 2.2209 2.3777 2.18384 2.40559 2.07735 2.42796 1.92779 2.42363 0.99 2.19627 2.40234 2.149 2.44043 2.02227 2.48304 1.84989 2.50153 0.93 2.22683 2.37178 2.19222 2.39721 2.09059 2.41472 1.94652 2.4049 0.999 2.16768 2.43092 2.10857 2.48086 1.95834 2.54697 1.75949 2.59193 Estimating the Variance Known Mean If the mean is known, we compute the expression the statistic that has a Â2n distribution, obtaining Sample n X 2 (xk ¡ ¹) 1 17.3846 n X k=1 2 (xk ¡ ¹) , which goes in the numerator of 2 8.43898 3 3.31039 4 1.67696 k=1 The critical Â-scores turn out to be (denoting them by  n;L and  n;R ) Confidence chi_100,L chi_100,R chi_50,L chi_50,R chi_20,L chi_20,R chi_10,L chi_10,R 0.9 124.342 77.9295 67.5048 34.7643 31.4104 10.8508 18.307 3.9403 0.92 126.079 76.6705 68.8039 33.9426 32.3206 10.4154 19.0207 3.69654 0.95 129.561 74.2219 71.4202 32.3574 34.1696 9.59078 20.4832 3.24697 0.98 135.807 70.0649 76.1539 29.7067 37.5662 8.2604 23.2093 2.55821 0.99 140.169 67.3276 79.49 27.9907 39.9968 7.43384 25.1882 2.15586 Applying the information above to the formula for the confidence interval for ¾ 2 results in the following known mean left #1 right #1 left #2 right #2 left #3 right #3 left #4 right #4 0.9 0.13981 0.22308 0.12501 0.24275 0.10539 0.30508 0.0916 0.42559 0.92 0.13789 0.22674 0.12265 0.24863 0.10242 0.31784 0.08817 0.45366 0.95 0.13418 0.23422 0.11816 0.26081 0.09688 0.34516 0.08187 0.51647 0.98 0.12801 0.24812 0.11081 0.28408 0.08812 0.40075 0.07225 0.65552 0.99 0.12403 0.25821 0.10616 0.30149 0.08277 0.44531 0.06658 0.77786 Unknown Mean When the mean is unknown, the numerator in the statistic we use (which will now have a  2n¡1 n X 2 (xk ¡ x¹ ) = (n ¡ 1)s2. The last expression means to take advantage distribution) is given by k=1 of the sample variance, which we calculated at the beginning. Sample (n ¡ 1)s2 1 17.3846 2 8.43758 3 3.26556 4 1.52249 The critical Â-scores are now (denoted by  2(n¡1);L and  2(n¡1);R) Confidence chi_99,L chi_99,R chi_49,L chi_49,R chi_19,L chi_19,R chi_9,L chi,9,R 0.9 123.225 77.0463 66.3386 33.9303 30.1435 3.32511 16.919 3.32511 0.92 124.955 75.7949 67.6271 33.1192 31.0367 3.10467 17.6083 3.10467 0.95 128.422 73.3611 70.2224 31.5549 32.8523 2.70039 19.0228 2.70039 0.98 134.642 69.2299 74.9195 28.9406 36.1909 2.0879 21.666 2.0879 0.99 138.987 66.5101 78.2307 27.2493 38.5823 1.73493 23.5894 1.73493 0.95 0.13537 0.23697 0.12016 0.26739 0.0994 1.20929 0.08004 0.5638 0.98 0.12912 0.25111 0.11262 0.29155 0.09023 1.56404 0.07027 0.7292 0.99 0.12508 0.26138 0.10786 0.30964 0.08464 1.88224 0.06454 0.87755 resulting in the following confidence intervals Unknown mean left #1 right #1 left #2 right #2 left #3 right #3 left #4 right #4 0.9 0.14108 0.22564 0.12719 0.24867 0.10833 0.98209 0.08999 0.45788 0.92 0.13913 0.22936 0.12477 0.25476 0.10522 1.05182 0.08646 0.49039 As the sample size gets smaller and/or the confidence level rises, the width of the interval becomes larger, sometimes very much larger. Fortunately, the “true” variance (the one used in simulating the data) of .16 falls within all intervals.