Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Student Lecture Notes Penggunaan Distribusi Normal Normal Distribution 1. ‘BellBell-Shaped’ Shaped’ & Symmetrical 1. Menjelaskkan banyak proses acak yang kontinu X 3. ‘Middle Spread’ Spread’ adl 1.33 σ Example: Binomial 4. Peubah Acak mempunyai range tak hingga 3. Dasar dari semua statistik inferensia klasik 1 Mean Median Mode 2 Normal Distribution Sifat yg penting 3 f(X) 2. Mean, Median, Mode sama 2. Bisa digunakan untuk mendekati peluang perubah acak diskrit 1 • Hampir separo “bobot/ weight” weight” berada dibawah mean (krn symmetri) • 68% 68% peluang berada dlm 1 standard deviation dari mean • 95% 95% peluang berada dlm 2 standard deviations • 99% 99% peluang berada dlm 3 standard deviations Probability Density Function f(X) f (x) = µ +σ µ − 3σ µ − 2σ µ − σ µ + σ µ + 2σ µ + 3σ x σ π e µ X Mean Median Mode 4 1 σ 2π e 2 11 xx −− µµ 2 −− 22 σσ = Nilai Peubah acak (-∞ < x < ∞) = Standard Deviation dari populasi = 3.14159 = 2.71828 = Mean dari peubah acak x Student Lecture Notes Akibat dari Variasi Parameter (µ & σ) Notasi X ~ N(µ N(µ,σ) Peubah Acak X mengikuti distribusi Normal (N) dengan mean µ dan standard deviation σ. X ~ N(40,1) X ~ N(10,5) X ~ N(50,3) 5 f(X) B A C X 6 Normal Distribution Probability Peluang dibawah kurva! d Tak hingga tabel Normal Tiap distribusi memerlukan satu tabel. ? P(c ≤ x ≤ d) = ∫? f (x) dx c f(X) f(x) c 7 2 d X x 8 Student Lecture Notes Standardize the Normal Distribution Z= Normal Distribution X −µ σ Contoh Standarisasi Z is N(0,1) Standardized Normal Distribution σ σ=1 µ µ= 0 X X − µ 6.2 − 5 = = .12 σ 10 Z= Normal Distribution Standardized Normal Distribution σ = 10 Z Hanya satu tabel! 9 3 σ=1 µ= 5 6.2 X Mendapatkan Peluangnya Contoh P(3.8 ≤ X ≤ 5) Standardized Normal Probability Table (Portion) Z .00 .01 Z= σ=1 .02 0.0 .0000 .0040 .0080 µ= 0 .12 Z 10 X − µ 3.8 − 5 = = − .12 σ 10 Normal Distribution Standardized Normal Distribution σ = 10 .0478 σ=1 0.1 .0398 .0438 .0478 0.2 .0793 .0832 .0871 .0478 µ= 0 .12 Z 0.3 .1179 .1217 .1255 11 Probabilities 3.8 µ = 5 12 X -.12 µ = 0 Shaded area exaggerated Z Student Lecture Notes 4 Contoh P(2.9 ≤ X ≤ 7.1) Contoh P(X P(X ≥ 8) X −− µµ 2.9 −− 5 == == −−.21 σσ 10 X −− µµ 7.1 −− 5 Z == == == .21 Standardized σσ 10 Normal Distribution Z == Normal Distribution Normal Distribution σ = 10 Z= X − µ 8−5 = = .30 σ 10 Normal Distribution σ=1 Standardized Normal Distribution σ = 10 σ=1 .1664 .5000 2.9 5 7.1 X 13 -.21 0 .21 14 Contoh P(7.1 ≤ X ≤ 8) X −− µµ 7.1 −− 5 == == .21 σσ 10 X −− µµ 8 −− 5 Z == == == .30 Standardized σσ 10 Normal Distribution Z == Normal Distribution σ = 10 σ=1 .1179 .0347 .0832 µ = 5 7.1 8 X 15 µ = 0 .21 .30 Z Shaded area exaggerated µ=5 Z Shaded area exaggerated Normal Distribution .3821 .1179 .0832 .0832 8 X µ=0 Shaded area exaggerated .30 Z