Download Penggunaan Distribusi Normal Normal Distribution Normal

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Student Lecture Notes
Penggunaan
Distribusi Normal
Normal Distribution
1. ‘BellBell-Shaped’
Shaped’ &
Symmetrical
1. Menjelaskkan banyak proses acak
yang kontinu
X
3. ‘Middle Spread’
Spread’
adl 1.33 σ
Example: Binomial
4. Peubah Acak
mempunyai range tak
hingga
3. Dasar dari semua statistik inferensia
klasik
1
Mean
Median
Mode
2
Normal Distribution
Sifat yg penting
3
f(X)
2. Mean, Median,
Mode sama
2. Bisa digunakan untuk mendekati
peluang perubah acak diskrit
1
• Hampir separo “bobot/
weight”
weight” berada
dibawah mean (krn
symmetri)
• 68%
68% peluang berada
dlm 1 standard
deviation dari mean
• 95%
95% peluang berada
dlm 2 standard
deviations
• 99%
99% peluang berada
dlm 3 standard
deviations
Probability
Density Function
f(X)
f (x) =
µ +σ
µ − 3σ µ − 2σ µ − σ
µ + σ µ + 2σ µ + 3σ
x
σ
π
e
µ
X
Mean
Median
Mode
4
1
σ
2π
e
2
 11   xx −− µµ  2
−− 
 

 22   σσ

= Nilai Peubah acak (-∞ < x < ∞)
= Standard Deviation dari populasi
= 3.14159
= 2.71828
= Mean dari peubah acak x
Student Lecture Notes
Akibat dari Variasi
Parameter (µ & σ)
Notasi
X ~ N(µ
N(µ,σ)
Peubah Acak X mengikuti distribusi
Normal (N) dengan mean µ dan standard
deviation σ.
X ~ N(40,1)
X ~ N(10,5)
X ~ N(50,3)
5
f(X)
B
A
C
X
6
Normal Distribution
Probability
Peluang
dibawah
kurva!
d
Tak hingga tabel Normal
Tiap distribusi
memerlukan satu tabel.
?
P(c ≤ x ≤ d) = ∫? f (x) dx
c
f(X)
f(x)
c
7
2
d
X
x
8
Student Lecture Notes
Standardize the
Normal Distribution
Z=
Normal
Distribution
X −µ
σ
Contoh Standarisasi
Z is N(0,1)
Standardized
Normal Distribution
σ
σ=1
µ
µ= 0
X
X − µ 6.2 − 5
=
= .12
σ
10
Z=
Normal
Distribution
Standardized
Normal Distribution
σ = 10
Z
Hanya satu tabel!
9
3
σ=1
µ= 5 6.2 X
Mendapatkan
Peluangnya
Contoh
P(3.8 ≤ X ≤ 5)
Standardized Normal
Probability Table (Portion)
Z
.00
.01
Z=
σ=1
.02
0.0 .0000 .0040 .0080
µ= 0 .12 Z
10
X − µ 3.8 − 5
=
= − .12
σ
10
Normal
Distribution
Standardized
Normal Distribution
σ = 10
.0478
σ=1
0.1 .0398 .0438 .0478
0.2 .0793 .0832 .0871
.0478
µ= 0 .12 Z
0.3 .1179 .1217 .1255
11
Probabilities
3.8 µ = 5
12
X
-.12 µ = 0
Shaded area exaggerated
Z
Student Lecture Notes
4
Contoh
P(2.9 ≤ X ≤ 7.1)
Contoh
P(X
P(X ≥ 8)
X −− µµ 2.9 −− 5
==
== −−.21
σσ
10
X −− µµ 7.1 −− 5
Z ==
==
== .21
Standardized
σσ
10
Normal Distribution
Z ==
Normal
Distribution
Normal Distribution
σ = 10
Z=
X − µ 8−5
=
= .30
σ
10
Normal
Distribution
σ=1
Standardized
Normal Distribution
σ = 10
σ=1
.1664
.5000
2.9 5 7.1 X
13
-.21 0 .21
14
Contoh
P(7.1 ≤ X ≤ 8)
X −− µµ 7.1 −− 5
==
== .21
σσ
10
X −− µµ 8 −− 5
Z ==
==
== .30
Standardized
σσ
10
Normal Distribution
Z ==
Normal Distribution
σ = 10
σ=1
.1179
.0347
.0832
µ = 5 7.1 8 X
15
µ = 0 .21 .30 Z
Shaded area exaggerated
µ=5
Z
Shaded area exaggerated
Normal
Distribution
.3821
.1179
.0832 .0832
8 X
µ=0
Shaded area exaggerated
.30 Z
Related documents