Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
cube root∗ Daume† 2013-03-21 12:46:24 √ The cube root of a real number x, written as 3 x, is the real number y such √ √ √ √ 3 that y 3 = x. Equivalently, 3 x = x. Or, 3 x 3 x 3 x = x. √The cube root 1 notation is actually an alternative to exponentiation. That is, 3 x = x 3 . Properties: • The cube operation of an exponentiation has the following property: √ √ root n 3 xn = 3 x . • The cube root operation is distributive for multiplication and division, but q √ √ √ 3 x √ not for addition and subtraction. That is, 3 xy = 3 x 3 y, and 3 xy = √ 3 y. • However, in general, the cube root operation is not distributive for √ √ addition √ √ √ √ and substraction. That is, 3 x + y 6= 3 x + 3 y and 3 x − y 6= 3 x − 3 y. • The cube root is a special case of the general nth root. • The cube root is a continuous mapping from R → R. • The cube root function from R → R defined as f (x) = function. √ 3 x is an odd Examples: √ 1. 3 −8 = −2 because (−2)3 = (−2) × (−2) × (−2) = −8. √ 2. 3 x3 + 3x2 + 3x + 1 = x + 1 because (x + 1)3 = (x + 1)(x + 1)(x + 1) = (x2 + 2x + 1)(x + 1) = x3 + 3x2 + 3x + 1. p 3. 3 x3 y 3 = xy because (xy)3 = xy × xy × xy = x3 y 3 . q 3 8 8 4. 3 125 = 52 because ( 25 )3 = 253 = 125 . ∗ hCubeRooti created: h2013-03-21i by: hDaumei version: h30748i Privacy setting: h1i hDefinitioni h11-00i † This text is available under the Creative Commons Attribution/Share-Alike License 3.0. You can reuse this document or portions thereof only if you do so under terms that are compatible with the CC-BY-SA license. 1