Download 3-Lie bialgebras (Lb,Cd) and (Lb,Ce)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Mathematica Aeterna, Vol. 6, 2016, no. 2, 159 - 163
3-Lie bialgebras (Lb, Cd) and (Lb, Ce)
BAI Ruipu
College of Mathematics and Information Science,
Hebei University, Baoding, 071002, China
email: [email protected]
LIN Lixin
College of Mathematics and Information Science,
Hebei University, Baoding, 071002, China
email: [email protected]
Abstract
In this paper, we continue to study the structure of four dimensional
3-Lie bialgebras. We discuss the existence of 3-Lie bialgebras of types
(Lb , Cd ) and (Lb , Ce ). It is proved that there do not exist 3-Lie bialgebras of types (Lb1 , Ce ), (Lb2 , Ce ) and (Lb2 , Cd ). There exists only one
class of 3-Lie bialgebras of type (Lb , Cd ), that is (Lb1 , Cd , ∆1 ) ( Theorem
3.4 ).
2010 Mathematics Subject Classification: 17B05 17D30
Keywords: 3-Lie algebra, 3-Lie coalgebra, 3-Lie bialgebra.
1
Introduction
In 1985, Filippov provided n-Lie algebras [1]. Since then, the n-Lie algebra,
especially, the 3-Lie algebra attracts more and more attention, and it is widely
used in mathematics, mathematical physics and string theory. And some n-ary
algebras such as n-Hom algebras, n-supper algebras, n-Rota-Baxter algebras,
etc. are provided and studied (see [2, 3, 4]). Authors in paper [5] introduced
3-Lie coalgebras and 3-Lie bialgebras, and constructed some 4-dimensional 3Lie bialgebras. In paper [6], 4-dimensional 3-Lie bialgebras of type (Lb , Cb)
are classified. It is proved that there exist seven classes of 4-dimensional 3-Lie
bialgebras of type (Lb , Cb ). In this paper, we discuss 3-Lie bialgebras of types
(Lb , Cd ) and (Lb , Ce ), that is, the 3-Lie algebras with one-dimensional derived
algebra and 3-Lie coalgebras with three and four dimensional derived algebra,
160
Bai Ruipu, Lixin Lin
which is denoted by (Lb , Cd ) and (Lb , Ce ), respectively. And we suppose that
3-Lie algebras and 3-Lie coalgebras are over a field F of characteristic zero,
and omit the zero multiplication of basis vectors in 3-Lie algebras and 3-Lie
coalgebras.
2
Preliminaries
A 3-Lie algebra [1] is a vector space L endowed with a linear multiplication
µ : L∧3 → L satisfying that, for all x, y, z, u, v ∈ L,
µ(u, v, µ(x, y, z)) = µ(x, y, µ(u, v, z))+µ(y, z, µ(u, v, x))+µ(z, x, µ(u, v, y)).
For defining 3-Lie coalgebras, we need to define following linear mapps
ωi : L ⊗ L ⊗ L ⊗ L ⊗ L → L ⊗ L ⊗ L ⊗ L ⊗ L, 1 ≤ i ≤ 3, by
ω1 (x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ) = x3 ⊗ x4 ⊗ x1 ⊗ x2 ⊗ x5 ,
ω2 (x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ) = x4 ⊗ x5 ⊗ x1 ⊗ x2 ⊗ x3 ,
ω3 (x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ) = x5 ⊗ x3 ⊗ x1 ⊗ x2 ⊗ x4 .
A 3-Lie coalgebra (L, ∆) [5] is a vector space L with a linear map ∆ :
L → L ⊗ L ⊗ L satisfying
Im(∆) ⊂ L ∧ L ∧ L, and (1 − ω1 − ω2 − ω3 )(1 ⊗ 1 ⊗ ∆)∆ = 0,
where 1 : L⊗5 → L⊗5 is identity.
Let (L1 , ∆1 ) and (L2 , ∆2 ) be 3-Lie coalgebras. If there is a linear isomorphism ϕ : L1 → L2 satisfying (ϕ ⊗ ϕ ⊗ ϕ)(∆1 (e)) = ∆2 (ϕ(e)), for all e ∈ L1 ,
then (L1 , ∆1 ) is isomorphic to (L2 , ∆2 ), and ϕ is called a 3-Lie coalgebra isoP
P
morphism, where (ϕ ⊗ ϕ ⊗ ϕ) (ai ⊗ bi ⊗ ci ) = ϕ(ai ) ⊗ ϕ(bi ) ⊗ ϕ(ci ).
i
i
A 3-Lie bialgebra [5] is a triple (L, µ, ∆) such that
(1) (L, µ) is a 3-Lie algebra with the multiplication µ : L ∧ L ∧ L → L,
(2) (L, ∆) is a 3-Lie coalgebra with ∆ : L → L ∧ L ∧ L,
(3) ∆ and µ satisfy the following identities, for x, y, u, v, w ∈ L,
(3)
(3)
∆µ(x, y, z) = ad(3)
µ (x, y)∆(z) + adµ (y, z)∆(x) + adµ (z, x)∆(y),
(3)
(3)
where ad(3)
µ (x, y), adµ (z, x), adµ (y, z) : L ⊗ L ⊗ L → L ⊗ L ⊗ L are linear
(3)
maps defined by (similar for ad(3)
µ (z, x) and adµ (y, z))
ad(3)
µ (x, y)(u ⊗ v ⊗ w) = (adµ (x, y) ⊗ 1 ⊗ 1)(u ⊗ v ⊗ w)
+(1 ⊗ adµ (x, y) ⊗ 1)(u ⊗ v ⊗ w) + (1 ⊗ 1 ⊗ adµ (x, y))(u ⊗ v ⊗ w)
= µ(x, y, u) ⊗ v ⊗ w + u ⊗ µ(x, y, v) ⊗ w + u ⊗ v ⊗ µ(x, y, w).
Two 3-Lie bialgebras (L1 , µ1 , ∆1 ) and (L2 , µ2 , ∆2 ) are called equivalent if
there exists a linear isomorphism f : L1 → L2 such that
(1) f : (L1 , µ1 ) → (L2 , µ2 ) is a 3-Lie algebra isomorphism,
(2) f : (L1 , ∆1 ) → (L2 , ∆2 ) is a 3-Lie coalgebra isomorphism, that is,
∆2 (f (x)) = (f ⊗ f ⊗ f )∆1 (x) for all x ∈ L1 .
Lemma 2.1[1] Let (L, µ) be a 4-dimensional 3-Lie algebra with dim L1 6= 0, 2,
and e1 , e2 , e3 , e4 be a basis of L. Then L is isomorphic to one and only one of the
following
3-Lie bialgebras (Lb , Cd ) and (Lb , Ce )
161
Lb1 . µ(e2 , e3 , e4 ) = e1 . Lb2 . µ(e1 , e2 , e3 ) = e1 .
Ld . µd (e2 , e3 , e4 ) = e1 , µd (e1 , e3 , e4 ) = e2 , µd (e1 , e2 , e4 ) = e3 .
Le . µe (e2 , e3 , e4 ) = e1 , µe (e1 , e3 , e4 ) = e2 , µe (e1 , e2 , e4 ) = e3 , µe (e1 , e2 , e3 ) = e4 .
Lemma 2.2 [5] Let L be a vector space over F , and µ : L ⊗ L ⊗ L → L be a
3-ary linear map. Then (L, µ) is a 3-Lie algebra if and only if (L∗ , µ∗ ) is a 3-Lie
coalgebra with µ∗ : L∗ → L∗ ⊗ L∗ ⊗ L∗ , where µ∗ is the dual map of µ.
3
3-Lie bialgebras of types (Lb, Cd ) and (Lb, Ce)
First We give the classification of 3-Lie coalgebras of the types (L, Cd ) and (L, Ce ).
Lemma 3.1 Let (L, ∆) be a 4-dimensional 3-Lie coalgebra with m-dimensional
derived algebra (3 ≤ m ≤ 4), and e1 , e2 , e3 , e4 be a basis of L. Then L isomorphic
to one and only one of the following
Cd . ∆d (e1 ) = e2 ∧ e3 ∧ e4 , ∆d (e2 ) = e1 ∧ e3 ∧ e4 , ∆d (e3 ) = e1 ∧ e2 ∧ e4 ;
Ce . ∆e (e1 ) = e2 ∧ e3 ∧ e4 , ∆e (e2 ) = e1 ∧ e3 ∧ e4 , ∆e (e3 ) = e1 ∧ e2 ∧ e4 ,
∆e (e4 ) = e1 ∧ e2 ∧ e3 .
Proof The result follows from Lemma 2.1, Lemma 2.2 and a direct computation,
we omit the computation process.
For convenience, in the following, for a 3-Lie bialgebra (L, µ, ∆), if the 3-Lie
algebra (L, µ) is the case (L, µbi ) in Lemma 2.1 and the 3-Lie coalgebra (L, ∆) is
the case (L, ∆d ) and (L, ∆e ) in Lemma 3.1, then the 3-Lie bialgebra (L, µbi , ∆d ) and
(L, µbi , ∆e ) are simply denoted by (Lbi , Cd ) and (Lbi , Ce ), which are called the 3-Lie
bialgebras of type (Lb , Cd ), and (Lb , Ce ), respectively.
For a given 3-Lie algebra L, in order to find all the 3-Lie bialgebra structures on
L, we should find all the 3-Lie coalgebra structures on L which are compatible with
the 3-Lie algebra L. Although a permutation of a basis of L gives isomorphic 3-Lie
coalgebra, but it may lead to the non-equivalent 3-Lie bialgebra.
Theorem 3.2 There do not exist 3-Lie bialgebras of the types (Lb1 , Ce ) and
(Lb2 , Ce ).
Proof By Lemma 2.1 and 2.2, we need to verify that 3-Lie algebras Lb1 and Lb2
are incompatible with the following six isomorphic 3-Lie coalgebras of the type Ce :
(1).∆(e1 ) = e2 ∧e3 ∧e4 , ∆(e2 ) = e1 ∧e3 ∧e4 , ∆(e3 ) = e1 ∧e2 ∧e4 , ∆(e4 ) = e1 ∧e2 ∧e3 ;
(2).∆(e1 ) = e2 ∧e3 ∧e4 , ∆(e2 ) = e1 ∧e3 ∧e4 , ∆(e3 ) = e2 ∧e1 ∧e4 , ∆(e4 ) = e2 ∧e1 ∧e3 ;
(3).∆(e1 ) = e2 ∧e3 ∧e4 , ∆(e2 ) = e3 ∧e1 ∧e4 , ∆(e3 ) = e2 ∧e1 ∧e4 , ∆(e4 ) = e2 ∧e3 ∧e1 ;
(4).∆(e1 ) = e2 ∧e4 ∧e3 , ∆(e2 ) = e1 ∧e4 ∧e3 , ∆(e3 ) = e2 ∧e1 ∧e4 , ∆(e4 ) = e2 ∧e1 ∧e3 ;
(5).∆(e1 ) = e2 ∧e4 ∧e3 , ∆(e2 ) = e4 ∧e1 ∧e3 , ∆(e3 ) = e2 ∧e4 ∧e1 , ∆(e4 ) = e2 ∧e1 ∧e3 ;
(6).∆(e1 ) = e2 ∧e4 ∧e3 , ∆(e2 ) = e4 ∧e3 ∧e1 , ∆(e3 ) = e2 ∧e4 ∧e1 , ∆(e4 ) = e2 ∧e3 ∧e1 .
Here we only check the case (1) is incompatible with the 3-Lie algebra Lb1 . Since
∆µb1 (e2 , e3 , e4 ) = ∆(e1 ) = e2 ∧ e3 ∧ e4 , but
(3)
(3)
(3)
adµb1 (e2 , e3 )∆(e4 ) + adµb1 (e3 , e4 )∆(e2 ) + adµb1 (e4 , e2 )∆(e3 ) = 0,
we obtain that
(3)
(3)
(3)
∆µb1 e2 , e3 , e4 ) 6= adµb1 (e2 , e3 )∆(e4 ) + adµb1 (e3 , e4 )∆(e2 ) + adµb1 (e4 , e2 )∆(e3 ).
Therefore, the case (1) of the type Ce is incompatible with the 3-Lie algebra Lb1 .
Similar discussions for others cases, we get the result.
162
Bai Ruipu, Lixin Lin
Theorem 3.3 There does not exist 3-Lie bialgebras of the type (Lb2 , Cd ).
Proof By Lemma 2.1 and 2.2, we need to verify that 3-Lie algebra Lb2 is incompatible with following twenty-four isomorphic 3-Lie coalgebras of the type Cd :
(1).∆(e1 ) = e2 ∧ e3 ∧ e4 , ∆(e2 ) = e1 ∧ e3 ∧ e4 , ∆(e3 ) = e1 ∧ e2 ∧ e4 ;
(2).∆(e1 ) = e2 ∧ e3 ∧ e4 , ∆(e2 ) = e3 ∧ e1 ∧ e4 , ∆(e3 ) = e2 ∧ e1 ∧ e4 ;
(3).∆(e1 ) = e2 ∧ e3 ∧ e4 , ∆(e2 ) = e1 ∧ e3 ∧ e4 , ∆(e3 ) = e2 ∧ e1 ∧ e4 ;
(4).∆(e1 ) = e3 ∧ e2 ∧ e4 , ∆(e2 ) = e3 ∧ e1 ∧ e4 , ∆(e3 ) = e1 ∧ e2 ∧ e4 ;
(5).∆(e1 ) = e3 ∧ e2 ∧ e4 , ∆(e2 ) = e3 ∧ e1 ∧ e4 , ∆(e3 ) = e2 ∧ e1 ∧ e4 ;
(6).∆(e1 ) = e3 ∧ e2 ∧ e4 , ∆(e2 ) = e1 ∧ e3 ∧ e4 , ∆(e3 ) = e1 ∧ e2 ∧ e4 ;
(7).∆(e1 ) = e2 ∧ e4 ∧ e3 , ∆(e2 ) = e1 ∧ e4 ∧ e3 , ∆(e4 ) = e2 ∧ e1 ∧ e3 ;
(8).∆(e1 ) = e2 ∧ e4 ∧ e3 , ∆(e2 ) = e4 ∧ e1 ∧ e3 , ∆(e4 ) = e2 ∧ e1 ∧ e3 ;
(9).∆(e1 ) = e2 ∧ e4 ∧ e3 , ∆(e2 ) = e1 ∧ e4 ∧ e3 , ∆(e4 ) = e1 ∧ e2 ∧ e3 ;
(10).∆(e1 ) = e4 ∧ e2 ∧ e3 , ∆(e2 ) = e4 ∧ e1 ∧ e3 , ∆(e4 ) = e2 ∧ e1 ∧ e3 ;
(11).∆(e1 ) = e4 ∧ e2 ∧ e3 , ∆(e2 ) = e1 ∧ e4 ∧ e3 , ∆(e4 ) = e1 ∧ e2 ∧ e3 ;
(12).∆(e1 ) = e4 ∧ e2 ∧ e3 , ∆(e2 ) = e4 ∧ e1 ∧ e3 , ∆(e4 ) = e1 ∧ e2 ∧ e3 ;
(13).∆(e1 ) = e3 ∧ e4 ∧ e2 , ∆(e3 ) = e4 ∧ e1 ∧ e2 , ∆(e4 ) = e3 ∧ e1 ∧ e2 ;
(14).∆(e1 ) = e3 ∧ e4 ∧ e2 , ∆(e3 ) = e1 ∧ e4 ∧ e2 , ∆(e4 ) = e1 ∧ e3 ∧ e2 ;
(15).∆(e1 ) = e3 ∧ e4 ∧ e2 , ∆(e3 ) = e1 ∧ e4 ∧ e2 , ∆(e4 ) = e3 ∧ e1 ∧ e2 ;
(16).∆(e1 ) = e4 ∧ e3 ∧ e2 , ∆(e3 ) = e4 ∧ e1 ∧ e2 , ∆(e4 ) = e1 ∧ e3 ∧ e2 ;
(17).∆(e1 ) = e4 ∧ e3 ∧ e2 , ∆(e3 ) = e4 ∧ e1 ∧ e2 , ∆(e4 ) = e3 ∧ e1 ∧ e2 ;
(18).∆(e1 ) = e4 ∧ e3 ∧ e2 , ∆(e3 ) = e1 ∧ e4 ∧ e2 , ∆(e4 ) = e1 ∧ e3 ∧ e2 ;
(19).∆(e2 ) = e4 ∧ e3 ∧ e1 , ∆(e3 ) = e4 ∧ e2 ∧ e1 , ∆(e4 ) = e3 ∧ e2 ∧ e1 ;
(20).∆(e2 ) = e4 ∧ e3 ∧ e1 , ∆(e3 ) = e2 ∧ e4 ∧ e1 , ∆(e4 ) = e3 ∧ e2 ∧ e1 ;
(21).∆(e2 ) = e4 ∧ e3 ∧ e1 , ∆(e3 ) = e4 ∧ e2 ∧ e1 , ∆(e4 ) = e2 ∧ e3 ∧ e1 ;
(22).∆(e2 ) = e3 ∧ e4 ∧ e1 , ∆(e3 ) = e2 ∧ e4 ∧ e1 , ∆(e4 ) = e3 ∧ e2 ∧ e1 ;
(23).∆(e2 ) = e3 ∧ e4 ∧ e1 , ∆(e3 ) = e2 ∧ e4 ∧ e1 , ∆(e4 ) = e2 ∧ e3 ∧ e1 ;
(24).∆(e2 ) = e3 ∧ e4 ∧ e1 , ∆(e3 ) = e4 ∧ e2 ∧ e1 , ∆(e4 ) = e3 ∧ e2 ∧ e1 .
The discussion is completely similar to Theorem 3.2. We omit the computing process.
Theorem 3.4 The only non-equivalent 3-Lie bialgebras of the type (Lb1 , Cd ) is
(Lb1 , Cd , ∆1 ) : ∆1 (e2 ) = e1 ∧ e4 ∧ e3 , ∆1 (e3 ) = e1 ∧ e4 ∧ e2 , ∆1 (e4 ) = e1 ∧ e3 ∧ e2 .
Proof We need to discuss the compatibility of twenty-four isomorphic 3-Lie
coalgebras of the type Ccd in Theorem 3.3 with the 3-Lie algebra Lb1 .
By a direct computation, only cases (19), (20), (21), (22), (23) and (24) are
compatible with the 3-Lie algebra Lb1 , respectively. Thanks to isomorphisms of
3-Lie bialgebras:
(19) → (22) : f (e1 ) = −e1 , f (e2 ) = e3 , f (e3 ) = e2 , f (e4 ) = e4 ;
(21) → (23), (23) → (24) : f (e1 ) = e1 , f (e2 ) = e√
3 , f (e3 ) = e4 , f (e
√4 ) = e2 ;
−1e3 , f (e4 ) = −1e
(19) → (20) : f (e1 ) = e1 , f (e2 ) = −e2 , f (e3 ) = √
√ 4;
(19) → (21) : f (e1 ) = e1 , f (e2 ) = −e2 , f (e3 ) = − −1e3 , f (e4 ) = − −1e4 ;
we get that the only non-equivalent 3-Lie bialgebras of the type (Lb1 , Cd ) is (Lb1 , Cd , ∆1 ).
Acknowledgements
The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014201006).
3-Lie bialgebras (Lb , Cd ) and (Lb , Ce )
163
References
[1] V. Filippov, n-Lie algebras, Sib. Mat. Zh., 26 (1985) 126-140.
[2] Y. Liu L. ChenY. Ma, Representations and module-extensions of 3-hom-Lie
algebras. J. Geom. Phys., 98 (2015): 376-383.
[3] B. SunL. Chen, RotaCBaxter multiplicative 3-ary Hom-Nambu Lie algebras. J.
Geom. Phys., 98 (2015): 400-413.
[4] 6.Y. Ma, L. Chen, On the cohomology and extensions of first-class n-Lie superalgebras. Commun. Algebra, 42(10) (2014): 4578-4599.
[5] R. Bai, Y. Cheng, J. Li, W. Meng, 3-Lie bialgebras, Acta Math. Scientia, 2014,
34B(2):513-522.
[6] R. Bai, Y. Zhang, Classes of 3-Lie bialgebras (Lb , Cb ), Mathematica Aeterna,
2016, 6(1): 25-29.
[7] A. Bolavin, V.G. Drinfeld, Solutions of the classical Yang- Baxter equation for
simple Lie algebras, Func. Anal. Appl, 16 (1982):159-180.
Related documents