* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download On the construction of N-dimensional hypernumbers
Survey
Document related concepts
Transcript
Mathematica Aeterna, Vol. 1, 2011, no. 07, 461- 490 On the construction of N-dimensional hypernumbers John F. Moxnes Department for Protection Norwegian Defence Research Establishment P.O. Box 25 2007 Kjeller, Norway E-mail: [email protected] Tel.: +47 63 807514, Fax: +47 63 807509 Kjell Hausken Faculty of Social Sciences University of Stavanger 4036 Stavanger, Norway E-mail: [email protected] Tel.: +47 51 831632, Tel. Dept: +47 51 831500, Fax: +47 51 831550 Abstract Complex numbers extend the concept of the 1 dimensional numbers to 2 dimensions. Quaternions extend numbers to 4 dimensions. Octonions and sedenions are extensions to 8 and 16 dimensions respectively. We study a general form of complex numbers, various axiomatic structures of 3 dimensional numbers, and finally N dimensional numbers, N 2k , k=0,1,2,.... Quaternions, octonions and sedenions are special cases. Two different structures for addition are studied. Keywords: complex numbers, hypernumbers, quaternions, octonions, sedenions 1 Introduction 1.1 Background 462 J.F. Moxnes and K. Hausken Man invented natural numbers to count people, sheep, cattle, etc. Fractions (rational numbers) were probably invented to account for fractions of volumes or areas, e.g. of corn, water or land. Probably zero was invented together with the construction of a number positioning system analogous to the abacus. Negative numbers account for dept (something owed to someone else). The irrational numbers were noticed by the Greeks. The numbers were necessary to account for the length of all geometric objects defined by Euclidean geometry. Complex numbers were historically introduced to allow for solutions of certain equations that have no real number solution, i.e. x^2=-1 (Nahin 1998). Complex numbers extend the concept of the 1 dimensional numbers to 2 dimensions. When complex numbers are viewed as a position vector in a 2 dimensional Cartesian system (complex plane), the x-axis is used for the real part and the vertical axis for the imaginary part. In this way a subspace of the complex numbers arises, i.e. the numbers on the x-axis are isomorphic to the real numbers. Addition of complex numbers corresponds to well known vector addition, while complex multiplication corresponds to multiplying magnitudes of the two vectors and adding their rotational angle with the x-axis. The commutative and associative laws for multiplication (and addition) are fulfilled for the complex numbers. Complex numbers are today used in many scientific fields such as engineering, electromagnetism, quantum physics and applied mathematics. The addition rule of complex numbers was constructed before vector addition and was most likely of vital importance for the idea of vector addition. A second type of complex numbers is the so called split-complex numbers. The square of the imaginary number i is 1 and not -1. These numbers were introduced by Cockle (1848) and Clifford (1882). For the third well known type of complex numbers, i.e. dual numbers, the square of the imaginary number is (0,0). Nonstandard numbers are often referred to as hypernumbers. Along with the imaginary hypernumber i another hypernumber emerged within physics in the nineteenth century (Cayley 1845, Clifford 1873, Hamilton 1969). Quaternions are numbers of 4 dimensions where the base elements are real numbers. Historically quaternions were visualized as the quotient of two directed lines in a 3 dimensional space. They are associative but not commutative in multiplication. Quaternions are now used in both theoretical and applied mathematics and in particular for calculations involving 3 dimensional rotations such as in 3 dimensional computer graphics and computer vision (Evans 1977, Conway et al. 2003). It is also common for the attitude control system of spacecraft to be commanded in terms of quaternions. Quaternions can be defined as two pairs of complex numbers with a certain On the construction of N-dimensional hypernumbers 463 multiplication rule for two such pairs. The 3 dimensional imaginary space corresponds to the three dimensional vector space of elementary vector calculus. Octonions are numbers of 8 dimensions. The octonions were developed by Graves (1843), inspired by the work of his fried Hamilton on quaternions. They were developed independently by Cayley (1845). Analogously to quaternions, the octonions can be defined as one pair of quaternions numbers with a certain multiplication rule for the pairs (Baez 2002). Octonions have some interesting properties related to Lie groups. Octonions have applications in string theory, special relativity and quantum logic. To day the concept of bi-quaternions are well known for pairs of quaternions. In general the elements in the bi-quaternions can be complex, dual or split-complex numbers. All these numbers can be conceived as 8 dimensional numbers. The space of bi-quaternions has a topology in the Euclidean metric on 8 dimensional space. The concepts of special relativity are illustrated through the biquaternions (Girard 1984). Sedenions are extensions to 16 dimensions (Muses 1976, 1980, 1994, Carmondy 1988, Carmondy 1997). The geometry of these numbers has been exploited (Carmondy 1997). Hypernumbers can be used to simplify the algebra of real numbers or extend established algebraic operations. In the literature the complex algebra extended to 4, 8 or 16 dimensional algebras are motivated mathematically by various assumptions about the norm and multiplication rules. No one within the literature has chosen a more generic route which is our objective in this paper. We do not explore the numbers’ geometric aspects and their application to solve or simplify physical problems which are topics of future research. 1.2 This paper’s contribution Earlier research has confined attention to 1,2,4,8,16 dimensional numbers and the Clifford algebra. We are not aware of research on higher dimensional numbers than 16, and research not assuming the Clifford algebra. To provide a more generic foundation, we study a general form of complex numbers, various axiomatic structures of 3 dimensional numbers, and finally N dimensional numbers, N 2k , k=0,1,2,..., based on the general form of complex numbers. We proceed outside the Clifford algebra in sections 7 and 8. Our approach is different from the literature in the sense that a new form of addition different from vector addition, exemplified with ( x1 , x2 ) ( y1 , y2 ) = ( x1 y2 y1 x2 , x2 y2 ) , is studied and generalized to N 2k , k=0,1,2,.... 464 J.F. Moxnes and K. Hausken 1.3 Organization In section 2 we give an introduction to well known relations of the complex numbers and also explore some numerical results in two dimensions. In section 3 we study 3 dimensional numbers. In section 4 we study 4 dimensional numbers and quaternions. In section 5 we study 8 dimensional numbers and octonions in particular. In section 6 we study N dimensional numbers that add as vectors. In section 7 we study quite generally numbers that do not add as vectors. Such numbers have not been studied in the literature. Section 8 provides our most general structure of N dimensional numbers. Section 9 concludes. 2 Complex numbers and some extensions as an introduction A complex number is a special type of an ordered pair. We define an ordered pair by def ( x1 , x2 ) { x1 , { x1 , x2 }}, x1 , x2 R . “def” means definition. The axiomatic structure of the complex numbers is mod ( x1 , x2 ) ( y1 , y2 ) ( x1 y1 , x2 y2 ),(a ) (2.1) mod ( x1 , x2 ) ( y1 , y2 ) x1 y1 x2 y2 , x1 y2 x2 y1 , (b) where “mod” means model assumption. It follows that ( x1 , 0) ( y1 , y2 ) x1 y1 , x1 y2 ( y1 , y2 ) ( x1 , 0) ( x, 0) ( y1 , y2 ) x y1 , x y2 ( y1 , y2 ) ( y1 , y2 ) ( y1 , y2 ) ..., x N x times (0, x2 ) (0, y2 ) ( x2 y2 , 0) (0,1) (0,1) (2.2) ( x1 , x2 ) ( y1 , y2 ) ( y1 , y2 ) ( x1 , x2 ) (1, 0) (1, 0) 1, 0 (0,1) (0,1) 1, 0 The distributive law is fulfilled: ( x1 , x2 ) ( y1 , y2 ) z1 , z2 ( x1 y1 , x2 y2 ) z1 , z2 ( x1 y1 ) z1 ( x2 y2 ) z2 , ( x1 y1 ) z2 ( x2 y2 ) z1 x1 z1 x2 z2 , x1 z 2 x2 z1 y1 z1 y2 z2 , y1 z2 y2 z1 ( x1 , x2 ) z1 , z2 ( y1 , y2 ) z1 , z2 (2.3) 465 On the construction of N-dimensional hypernumbers The Hamilton decomposition can be used, to read def def def def e1 (1, 0), e2 (0,1), x x1 , 0 e1 ( x2 , 0) e2 , y y1 , 0 e1 ( y2 , 0) e2 (2.4) Assume that we alternatively to (2.1) set the axiomatic structure more generally as mod D1: ( x1 , x2 ) ( y1 , y2 ) z1 , z2 ( x1 , x2 ) z1 , z2 ( y1 , y2 ) z1 , z2 mod D 2 : ( x1 , 0) ( y1 , y2 ) x1 y1 , x1 y2 (2.5) mod D3: (0, x2 ) (0, y2 ) ( x2 y2 , 0) (0,1) (0,1) It follows that x y x1 , x2 y1 , y2 x1 , 0 e1 ( x2 , 0) e2 y1 , 0 e1 ( y2 , 0) e2 x1 , 0 y1 , 0 e1 x2 , 0 y2 , 0 e2 x1 y1 , 0 e1 x2 y2 , 0 e2 x1 y1 , x2 y2 x y x1 , 0 (0, x2 ) y1 , 0 (0, y2 ) x1 , 0 y1 , 0 x1 , 0 (0, y2 ) (0, x2 ) y1 , 0 (0, x2 ) (0, y2 ) x1 y1 , 0 (0, x1 y2 x2 y1 ) ( x2 y2 , 0) (0,1) (0,1) x1 y1 , 0 e1 ( x1 y2 x2 y1 , 0) e2 ( x2 y2 , 0) e2 e2 (2.6) Thus the crucial assumption is e2 e2 . For the special case of the complex numbers e2 e2 e1 . For the so called split-complex numbers e2 e2 e1 , and for the so called dual numbers e2 e2 (0, 0) . A question is what is to be called numbers. A strong condition can be applied for what we indeed will call numbers. We desire that a subspace of the numbers ( x1 , 0) , is isomorphic to the real numbers. Vectors in 2 dimensions are also ordered pairs. Assume that we define multiplication as the dot product, to read ( x1 , x2 ) ( y1 , y2 ) ( x1 y1 x2 y2 , 0) . It follows that ( x1 , 0) ( y1 , 0) ( x1 y1 , 0) and that ( x1 , 0) ( y1 , 0) ( x1 y1 , 0) . Thus these numbers are isomorphic to the real numbers. However, it follows that 466 J.F. Moxnes and K. Hausken ( x1 , x2 ) ( x1 , x2 ) (2 x1 , 2 x1 ) (2, 0) ( x1 , x2 ) (2 x1 , 0) . Thus we could not apply D2 in equation (2.5). We consider D2 to be important for the definition of what we actually call a number. However, as we will see in sections 7 and 8, D2 is too restrictive. Now, consider a quite general multiplication for complex numbers, to read mod x y a x y b x y c x y d e x f x g y h y , 1 1 1 1 2 1 2 1 1 2 2 1 1 1 1 2 1 1 1 2 ( x1 , x2 ) ( y1 , y2 ) x1 y1a2 x1 y2 b2 x2 y1c2 x2 y2 d 2 e2 x1 f 2 x2 g 2 y1 h2 y2 (2.7) where a1 , b1 , c1 , d1 , e1 , f1 , g1 , h1 , a2 , b2 , c2 , d 2 , e2 , f 2 , g 2 and h2 are to be determined by some desirables (DX) of the axiomatic structure. It follows that D2 : ( x1 , 0) ( y1 , y2 ) x1 y1a1 x1 y2 b1 e1 x1 g1 y1 h1 y2 , x1 y1a2 x1 y2b2 e2 x1 g 2 y1 h2 y2 D2 x1 y1 , x1 y2 a1 1, b1 0, a2 0, b2 1, e1 e2 g1 g 2 h1 h2 0 (2.8) D3: (0, x2 ) (0, y2 ) x2 y2 d1 f1 x2 , x1 y2 x2 y2 d 2 f 2 x2 , (0,1) (0,1) d1 f1 , d 2 f 2 x2 y2 , 0 0,1 0,1 x2 y2 ,0 d1 f1 , d2 f 2 x2 y2 (d1 f1 ), x2 y2 (d2 f 2 ) D3 (0, x2 ) (0, y2 ) x2 y2 , 0 0,1 0,1 f1 f 2 0 We allow for more generality by allowing d1 and d 2 to be arbitrary. For complex numbers (0,1) (0,1) d1 , d 2 (1, 0) d1 1, d 2 0 . For split-complex numbers d1 1, d 2 0 . For dual numbers d1 0, d 2 0 . The addition rule could in general be different from (2.1a). Assume that generally mod x y a ' x y b ' x y c ' x y d ' e x ' f ' x g ' y h ' y , 1 1 1 1 2 1 2 1 1 2 2 1 1 1 1 2 1 1 1 2 ( x1 , x2 ) ( y1 , y2 ) x1 y1a2 ' x1 y2 b2 ' x2 y1c2 ' x2 y2 d 2 ' e2 ' x1 f 2 ' x2 g 2 ' y1 h2 ' y2 (2.9) 467 On the construction of N-dimensional hypernumbers where a1 ' , b1 ' , c1 ' , d1 ' , e1 ' , f1 ' , g1 ' , h1 ' , a2 ' , b2 ' , c2 ' , d 2 ' , e2 ' , f 2 ' , g 2 ' , and h2 ' are to be determined by some desirables (DX) of the axiomatic structure. Assume that we desire that ( x1 , x2 ) ( x1 , x2 ) 2, 0 ( x1 , x2 ) . This gives that 2, 0 ( x1 , x2 ) 2 x1 , 2 x2 x x a ' x1 x2b1 ' x2 x1c1 ' x2 x2 d1 ' e1 ' x1 f1 ' x2 g1 ' x1 h1 ' x2 , 1 1 1 x1 x1a2 ' x1 x2b2 ' x2 x1c2 ' x2 x2 d 2 ' e2 ' x1 f 2 ' x2 g 2 ' x1 h2 ' x2 a1 ' a2 ' b1 ' b2 ' c1 ' c2 ' d1 ' d 2 ' f1 ' f 2 ' h1 ' h2 ' 0 (2.10) e1 ' e2 ' g1 ' g 2 ' 1 Thus ( x1 , x2 ) ( y1 , y2 ) x1 y1 , x2 y2 . Indeed, to check whether the general complex numbers with (0,1) (0,1) d1 , d 2 constitute a field we check for the distributive law, to read x , x y , y z , z x y , x 1 2 1 2 1 2 1 1 2 y2 z1 , z2 ( x1 y1 ) z1 ( x2 y2 ) z2 d1 , ( x1 y1 ) z2 ( x2 y2 ) z2 d 2 ( x2 y2 ) z1 ( x1 ) z1 ( x2 ) z 2 d1 , ( x1 ) z2 ( x2 ) z2 d 2 ( x2 ) z1 ( y1 ) z1 ( y2 ) z2 d1 , ( y1 ) z2 ( y2 ) z2 ( y2 ) z1 x1 , x2 z1 , z2 y1 , y2 z1 , z2 (2.11) x , x y , y z , z x y 1 2 1 2 1 2 1 1 x2 y2 d1 , x1 y2 x2 y2 d 2 x2 y1 z1 , z2 ( x y x y d ) z ( x1 y2 x2 y2 d 2 x2 y1 ) z2 d1 , 1 1 2 2 1 1 ( x1 y1 x2 y2 d1 ) z2 ( x1 y2 x2 y2 d 2 x2 y1 ) z2 d 2 ( x1 y2 x2 y2 d 2 x2 y1 ) z1 x1 , x2 y1 , y2 z1 , z2 Thus we do not need (0,1) (0,1) (1, 0) for a field. We define z 2 n / 2 , n 2 k def z 2 z3 ... , k 1, 2,3...., (1, 0), (2, 0), (3, 0),... (2.12) zn Exp z z , 1 2 n 1 2! 3! z z , n 2k 1 def def def We write for simplicity that i (0,1), 1 (1, 0) . We set that i i 1 . Then we have for z = i : 468 J.F. Moxnes and K. Hausken i Exp i 1 i 2 3 i i 4 i 5 i 6 i 7 .. 3! 4! 5! 6! 7! 2 4 6 3 5 7 1 i .. Cos i Sin 2! 4! 6! 3! 5! 7! 2! (2.13) Thus Exp i 1 . Assume that instead i i 1 , which simply is the split-complex numbers. It follows that i Exp i 1 i 2 i 3 i 4 i 5 i 6 i 7 .. 3! 4! 5! 6! 7! 2 4 6 3 5 7 1 i .. Cosh i Sinh 2! 4! 6! 3! 5! 7! 2! (2.14) Thus Exp i Cosh i Sinh . Assume more generally that i i d1 . It follows that i Exp i 1 i 2 i 3 i 4 i 4 i 5 i 5 i 6 i 6 i 7 i 7 ... 4! 5! 6! 7! 2 4 6 3 5 7 d1 d12 d13 d1 d12 d13 (2.15) 1 i ... 2! 4! 6! 3! 5! 7! 2 4 6 3 5 7 d11/ 2 d11/ 2 d11/ 2 d11/ 3 d12/ 5 d13/ 7 1 i ... , d1 0 2! 4! 6! 3! 5! 7! 2! 3! If i i id 2 it follows that i Exp i 1 i 2! 1 d 2 2! 2 d 2 2 4! 2 3 i 3! 4 d 2 3 6! 6 .. 4! 5! 6! 7! 3 5 7 d 2 d 2 2 d 23 i .. 3! 5! 7! (2.16) 469 On the construction of N-dimensional hypernumbers Thus by applying that (0,1) (0,1) d1 , d 2 different calculations rules are developed for Exp i . The division by two complex numbers can be defined by ( x1 , x2 ) a, b c, d ( x1 , x2 ) c, d a, b (2.17) where “ ” defines division. The complex number ( x1 , x2 ) can be found by solving the equation set ( x1 , x2 ) a, b x1a x2b, x1b x2 a c, d x1a x2b c, x1b x2 a d (2.18) mod ( x1 , x2 ) (a, b) x1aa1 x1bb1 x2 ac1 x2bd1 , x1aa2 x1bb2 x2 ac2 x2bd 2 The three most known complex numbers can be given a well known matrix form, to read def x x2 1 Complex numbers : x1 , x2 , x2 x1 x x2 y1 y2 x1 y1 x2 y2 x1 , x2 y1 , y2 1 x1 y1 , x2 y2 x2 x1 y2 y1 x2 y2 x1 y1 x1 x2 y1 y2 x1 y1 x2 y2 x1 y2 x2 y1 x1 y1 x2 y2 , x1 y2 x2 y1 x2 x1 y2 y1 x1 y2 x2 y1 x1 y1 x2 y2 x1 , x2 y1 , y2 def x x2 1 Split Complex numbers : x1 , x2 , x1 , x2 y1 , y2 x1 y1 , x2 y2 x2 x1 x x y y x y x y x y x y x1 , x2 y1 , y2 1 2 1 2 1 1 2 2 1 2 2 1 x1 y1 x2 y2 , x1 y2 x2 y1 x2 x1 x2 y1 x1 y2 x2 y1 x1 y1 x2 y2 def x x2 1 Dual numbers : x1 , x2 , x1 , x2 y1 , y2 x1 y1 , x2 y2 0 x1 x x2 y1 y2 x1 y1 x1 y2 x2 y1 x1 , x2 y1 , y2 1 x1 y1 , x1 y2 x2 y1 0 x1 0 y1 0 x1 y1 (2.19) 470 J.F. Moxnes and K. Hausken We observe that (0,1) (0,1) 1, 0 , (0,1) (0,1) 0, 0 and (0,1) (0,1) 1, 0 for complex, dual and split-complex numbers respectively. D1 is trivially satisfied by the matrix algebra. However, D2 is not obvious. def cx ex2 ax2 gx1 Consider a matrix of the form x1 , x2 1 . We achieve bx2 hx1 dx1 fx2 cx ex2 ax2 gx1 cy1 ey2 ay2 gy1 ( x1 , x2 ) 1 , ( y1 , y2 ) bx2 hx1 dx1 fx2 by2 hy1 dy1 fy2 D2 : cx gx1 cy1 ey2 ay2 gy1 ( x1 , 0) ( y1 , y2 ) 1 hx1 dx1 by2 hy1 dy1 fy2 cx1 (cy1 ey2 ) gx1 (by2 hy1 ) cx1 (ay2 gy1 ) gx1 (dy1 fy2 ) hx1 (cy1 ey2 ) dx1 (by2 hy1 ) hx1 (ay2 gy1 ) dx1 (dy1 fy2 ) cx y ex1 y2 ax1 y2 gx1 y1 ( x1 y1 , x1 y2 ) 1 1 bx1 y2 hx1 y1 dx1 y1 fx1 y2 D2 ( x1 , 0) ( y1 , y2 ) ( x1 y1 , x1 y2 ) c d 1, g h 0 ex ax2 ey2 ay2 ex2 ey2 ax2by2 ex2 ay2 ax2 fy2 D3: (0, x2 ) (0, y2 ) 2 bx2 fx2 by2 fy2 bx2 ey2 fx2 by2 bx2 ay2 fx2 fy2 2 x2 y2 0 e a e a ab e a (e f ) (0,1) (0,1) , ( , 0) x y , 2 2 2 b f b f b(e f ) ab f 0 x2 y2 2 x2 y2 0 e2 ab ea af (ab e ) x2 y2 a (e f ) x2 y2 ( x2 y2 , 0) (0,1) (0,1) (2.20) 2 2 0 x y eb fb ab f b e f x y ab f x y ( ) ( ) 2 2 2 2 2 2 (0, x2 ) (0, y2 ) ab e 2 2ae We achieve that (0,1) (0,1) d1 , d 2 2be ab f 2 . Thus d 2 = 2e which implies d1 ex2 d1 2e2 ab e 2 , d1 2 fe ab f 2 d1 ab e 2 , e f . Thus all matrices of the form x1 ex2 ax2 bx2 x1 ex2 fulfill D1, ab e 2 2ae (0,1) (0,1) (ab e 2 , 2e) . 2be ab e 2 d2 d1 D2 and D3. We achieve that 471 On the construction of N-dimensional hypernumbers 3 Ordered triplets and 3 dimensional numbers We define 3 dimensional numbers through the ordered triplet ( x1 , x2 , x3 ) ={ x1 ,{ x1 , x2 },{ x1 , x2 , x3 }}. We forecast some desirables that these triplets should fulfill to be called a number. Analogously to equation (2.5) we set that mod D1: ( x1 , x2 , x3 ) ( y1 , y2 , y3 ) ( z1 , z2 , z3 ) ( x1 , x2 , x3 ) ( z1 , z2 , z3 ) ( y1 , y2 , y3 ) ( z1 , z2 , z3 ) mod D 2 : ( x1 ,0) ( y1 , y2 , y3 ) x1 y1 , x1 y2 , x1 y3 (3.1) mod D3 : (0, x2 , 0) (0, y2 , 0) ( x2 y2 , 0, 0) (0,1, 0) (0,1, 0) mod D 4 : (0, 0, x3 ) (0, 0, y3 ) ( x3 y3 , 0, 0) (0, 0,1) (0, 0,1) We use the Hamilton decomposition and set that x x1 , 0, 0 e1 ( x2 , 0, 0) e2 ( x3 , 0, 0) e3 . If we seek correspondence with the complex numbers e2 e2 = e1 . Assume that we choose that e3 e3 = e1 . Assume that we apply that factors commute and set that e3 e2 = e2 e3 = e2 (Alt 1) or e3 e2 = e2 e3 = e3 (Alt 2). Thus we can construct Table 1. Table 1: Table for ei e j , i, j 1, 2,3 . e1 e2 e3 e1 e1 e2 e3 e2 e2 - e1 e2 (-+ e3 ) e3 e3 e2 (-+ e3 ) e1 We observe that the numbers of the type ( x1 , y1 , 0) are isomorphic to the complex numbers. It follows that 472 J.F. Moxnes and K. Hausken Alt1: e2 e3 e2 e2 e3 e2 e2 e2 me1 , e2 e3 e2 e2 e2 me1 e2 e3 e3 e2 e3 e2 , e2 e3 e3 e2 e1 e2 (3.2) Alt 2 : e2 e3 e3 e2 e3 e2 e3 e2 e3 , e2 e3 e2 e2 e3 e3 e2 e3 e3 e3 e3 me1 , e2 e3 e3 e2 e1 e2 Although the commutative law for multiplication is satisfied, the associative law is only satisfied if e2 e3 e2 and e3 e3 e1 . To determine the general algorithm, we write for simplicity that x x1e1 x2 e2 x3e3 , y y1e1 y2 e2 y3 e3 , to read Alt1: e2 e3 e2 , e3 e3 e1 x y x1e1 x2 e2 x3 e3 y1e1 y2 e2 y3e3 x1 y1 , x2 y2 , x3 y3 x y x1e1 x2 e2 x3e3 y1e1 y2 e2 y3 e3 (3.3) x1 y1 x2 y2 x3 y3 e1 x1 y2 y1 x2 ( x2 y3 x3 y2 ) e2 x1 y3 x3 y1 e3 Alt 2 : e2 e3 e3 , e3 e3 e1 x y x1 y1 x2 y2 x3 y3 e1 x1 y2 x2 y1 e2 x1 y3 x3 y1 ( x2 y3 x3 y2 ) e3 def def We write that i (0,1, 0), 1 (1, 0, 0), i i 1 . It follows easily that Exp i 1 . If def j (0, 0,1), j j 1 it follows easily that Exp j 1 . We can also calculate Exp i j . Assume that we set i j i . It follows that i j Exp i j 1 i j 2! 2 3 4 i j 3! 5 3 i j 4! 6 4 5 i j 5! i j 6! 6 i j 7! 7 .. 7 i i i .. 2! 3! 4! 5! 6! 7! 2 4 6 3 5 7 1 i .. Cos i Sin 2! 4! 6! 3! 5! 7! 1 i 2 (3.4) 473 On the construction of N-dimensional hypernumbers Thus Exp i j 1 . It would be nice if we could define a 3 dimensional number as a pair of a 1 dimensional and 2 dimensional complex number. We consider the ordered pair x , 0 , x , x x , x , x 1 2 3 1 2 3 which we conceive as 3 dimensional number. We now use sum and multiplication rules as defined for the complex numbers, to read mod x , 0 , x , x y , 0 , y , y x x , 0 , x , x y , 0 , y , y mod 1 2 3 1 2 3 1 2 3 1 2 3 1 y1 , 0 , x2 , x3 y2 , y3 x1 y1 , 0 , x2 y2 , x3 y3 x , 0 y , 0 x , x y , y , x , 0 y , y x , x y , 0 1 1 2 3 2 3 1 2 3 2 3 1 (3.5) Thus it follows that x , 0 , x , x y , 0 , y , y x , 0 y , 0 x , x y , y , x , 0 y , y x , x y , 0 x y , 0 x y x y , x y x y , x y x y , x y x y 1 2 1 3 1 1 2 1 1 2 2 2 3 3 3 3 2 3 2 3 3 1 2 2 1 2 3 2 1 2 3 1 3 1 (3.6) 1 3 x1 y1 x2 y2 x3 y3 , x2 y3 x3 y2 , x1 y2 x2 y1 , x3 y1 x1 y3 0 But this is not a 3 dimensional number. However, if we use the multiplication rule for the dual numbers we achieve that mod x , 0 , x , x y , 0 , y , y x 1 2 3 1 2 3 1 y1 , 0 , x2 , x3 y2 , y3 x1 y1 , 0 , x2 y2 , x3 y3 mod x , 0 , x , x y , 0 , y , y x ,0 y , 0 , x , 0 y , y x , x y , 0 x y , 0 , x y x y , x y x y x y , x y x y , x y x y 1 2 1 1 3 1 2 1 2 1 2 3 1 3 1 1 3 1 1 1 1 2 1 2 1 2 3 1 3 2 3 1 1 3 (3.7) Thus the dual numbers allows for a viable construction of 3 dimensional numbers from a pair of two numbers. However, note that x2 , x3 and y2 , y3 do not need to be dual. We could use complex or split-complex numbers also, but with the multiplication rule for pairs as for dual numbers. Equation (3.7) applies for all three kinds of complex numbers. We achieve Table 2. 474 J.F. Moxnes and K. Hausken Table 2: Table for ei e j , i, j 1, 2,3 . e1 e2 e3 e1 e1 , 0(c) e2 , e3 (c) e3 , - e2 (c) e2 e2 ,- e3 (c) 0, 0(c) 0, e1 (c) e3 e3 , e2 (c) 0,- e1 (c) 0, 0(c) In 3 dimensions the well known cross product between vectors is defined. Indeed this is a special type of multiplication for ordered triplets. In Table 2 the cross product relations are denoted by (c). This gives that x , 0 , x , x y , 0 , y , y x y 1 2 3 1 2 3 2 3 x3 y2 , x3 y1 x1 y3 , x1 y2 x2 y1 , (a ) (3.8) x1 , 0, 0 y1 , y2 , y3 0, x1 y3 , x1 y2 , (b) The cross product in (3.8b), and the triplet with the dot product x1 , x2 , x3 y1 , y2 , y3 x1 y1 x2 y2 x3 y3 , 0, 0 , violate D2. The implications are that the dot product and the cross product do not apply for numbers. 4 4 dimensional numbers and the quaternions The quaternions are most simply defined by the Hamilton decomposition, see Table 3. Table 3: Table for quaternions (q) ei e j , i, j 1, 2,3, 4 x e1 e2 e3 e4 e1 e1 e2 e3 e4 e2 e2 - e1 e4 - e3 e3 e3 - e4 - e1 e2 e4 e4 e3 - e2 - e1 The numbers of the type x1 , x2 , 0, 0 correspond to the 2 dimensional complex numbers. Due to the relation e3 e2 e4 the numbers of the type x1 , x2 , x3 , 0 do not correspond to 3 475 On the construction of N-dimensional hypernumbers dimensional numbers. Thus the product of two 3 dimensional numbers (e.g. e3 e2 ) gives a number with a fourth component ( e4 ). We note that the commutative law is not fulfilled. To check the associative law we calculate e2 e3 e4 e4 e4 e1 , e2 e3 e4 e2 e2 e1 e4 e2 e3 e3 e3 e1 , e4 e2 e3 e4 e4 e1 e4 e2 e4 e3 e4 e2 , e4 e2 e4 e4 e3 e2 e2 e3 e2 e4 e2 e3 , e2 e3 e2 e2 e4 e3 e2 e3 e3 e4 e3 e2 , e2 e3 e3 e2 (4.1) The quaternions are associative but not commutative in multiplication. If would be nice if we could construct 4 dimensional numbers from pairs of complex numbers, to read x , x , x , x x , x , x , x . To show that this is possible, we apply 1 2 3 4 1 2 3 4 for pairs analogously to the multiplication of complex numbers mod x , x , x , x y , y , y , y x y , x x , x , x , x y , y , y , y mod 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 1 2 y2 , x3 y3 , x4 y4 (4.2) x , x y , y x , x y , y , x , x y , y x , x y , y 1 2 1 2 3 4 3 4 1 2 3 4 3 4 1 2 Thus it follows if the pairs are complex numbers that x1 , x2 , x3 , x4 y1 , y2 , y3 , y4 x1 , x2 y1 , y2 x3 , x4 y3 , y4 , x1 , x2 y3 , y4 x3 , x4 y1 , y2 x1 y1 x2 y2 , x1 y2 x2 y1 ( x3 y3 x4 y4 , x3 y4 x4 y3 ), x1 y3 x2 y4 , x1 y4 x2 y3 x3 y1 x4 y2 , x4 y1 x3 y2 x1 y1 x2 y2 x3 y3 x4 y4 , x1 y2 x2 y1 x3 y4 x4 y3 , x1 y3 x3 y1 x2 y4 x4 y2 , x1 y4 x4 y1 x2 y3 x3 y2 (4.3) This means that 476 J.F. Moxnes and K. Hausken e1 e1 e1 , e2 e2 e1 , e3 e3 e1 , e4 e4 e1 e3 e4 e4 e3 e2 , (4.4) e2 e4 e4 e2 e3 e2 e3 e3 e2 e4 The relationship above does not apply for the quaternions. The quaternions do not commute for e4 e3 = e2 and e2 e3 = e4 . Another difference is that e4 e4 e1 for quaternions. To compare we construct the Table 4 where the m1 numbers are denoted by m1 where they are different from the quaternions. Table 4: Quaternions and m1 4 dimensional numbers, ei e j , i, j 1, 2,3, 4 . e1 e2 e3 e4 e1 e1 e2 e3 e4 e2 e2 - e1 e4 - e3 e3 e3 - e4 - e1 e2 e4 (m1) e4 e4 e3 - e3 (m1) - e2 (m1) - e2 - e1 e1 (m1) The m1 numbers are associative, to read e2 e3 e4 e4 e4 e1 , e2 e3 e4 e2 (e2 ) e1 e4 e2 e3 (e3 ) e3 e1 , e4 e2 e3 e4 e4 e1 e4 e2 e4 (e3 ) e4 e2 , e4 e2 e4 e4 e3 e2 e2 e3 e2 e4 e2 e3 , e2 e3 e2 e2 e4 e3 (4.5) m1 numbers are both commutative and associative. If we apply that the pairs are dual numbers, and apply the multiplication rule corresponding to dual numbers, we achieve that 477 On the construction of N-dimensional hypernumbers x1 , x2 , x3 , x4 y1 , y2 , y3 , y4 x1 , x2 y1 , y2 , x1 , x2 y3 , y4 x3 , x4 y1 , y2 x1 y1 , x1 y2 x2 y1 , x1 y3 , x1 y4 x2 y3 x3 y1 , x4 y1 x3 y2 x1 y1 , x1 y2 x2 y1 x3 y4 x4 y3 , x1 y3 x3 y1 , x1 y4 x4 y1 x2 y3 x3 y2 x1 y1 , x1 y2 x2 y1 x3 y4 x4 y3 , x1 y3 x3 y1 , x1 y4 x4 y1 x2 y3 x3 y2 (4.6) To construct the quaternions form pairs of complex numbers we apply the intuitive but ad hoc multiplication rule x , x , x , x y , y , y , y 1 2 3 4 1 2 3 4 mod x , x y , y x , x y , y *, x , x y , y x , x y , y * x , x y , y x , x y , y , x , x y , y x , x y , y 1 1 2 2 1 1 2 2 3 3 4 4 3 3 4 4 1 1 2 2 3 3 4 4 3 3 4 4 1 1 (4.7) 2 2 This gives the quaternions, to read x1 , x2 , x3 , x4 y1 , y2 , y3 , y4 x1 , x2 y1 , y2 x3 , x4 y3 , y4 , x1 , x2 y3 , y4 x3 , x4 y1 , y2 x1 y1 x2 y2 , x1 y2 x2 y1 ( x3 y3 x4 y4 , x3 y4 x4 y3 ), x1 y3 x2 y4 , x1 y4 x2 y3 x3 y1 x4 y2 , x4 y1 x3 y2 x1 y1 x2 y2 x3 y3 x4 y4 , x1 y2 x2 y1 x3 y4 x4 y3 , x1 y3 x3 y1 x2 y4 x4 y2 , x1 y4 x4 y1 x2 y3 x3 y2 x1 y1 x2 y2 x3 y3 x4 y4 , x1 y2 x2 y1 x3 y4 x4 y3 , x1 y3 x3 y1 x2 y4 x4 y2 , x1 y4 x4 y1 x2 y3 x3 y2 (4.8) Note that a different set of quaternions can be constructed by allowing x1 , x2 to be split complex numbers or dual numbers. For split-complex and dual numbers we achieve that 478 J.F. Moxnes and K. Hausken Split Complex : x1 , x2 , x3 , x4 y1 , y2 , y3 , y4 x1 , x2 y1 , y2 x3 , x4 y3 , y4 , x1 , x2 y3 , y4 x3 , x4 y1 , y2 x1 y1 x2 y2 , x1 y2 x2 y1 ( x3 y3 x4 y4 , x3 y4 x4 y3 ), x1 y3 x2 y4 , x1 y4 x2 y3 x3 y1 x4 y2 , x4 y1 x3 y2 x1 y1 x2 y2 x3 y3 x4 y4 , x1 y2 x2 y1 x3 y4 x4 y3 , x1 y3 x3 y1 x2 y4 x4 y2 , x1 y4 x4 y1 x2 y3 x3 y2 x1 y1 x2 y2 x3 y3 x4 y4 , x1 y2 x2 y1 x3 y4 x4 y3 , x1 y3 x3 y1 x2 y4 x4 y2 , x1 y4 x4 y1 x2 y3 x3 y2 Dual : x1 , x2 , x3 , x4 y1 , y2 , y3 , y4 x1 , x2 y1 , y2 , x1 , x2 y3 , y4 x3 , x4 y1 , y2 x1 y1 , x1 y2 x2 y1 , x1 y3 , x1 y4 x2 y3 x3 y1 , x4 y1 x3 y2 x1 y1 , x1 y2 x2 y1 , x1 y3 x3 y1 , x1 y4 x4 y1 x2 y3 x3 y2 (4.9) The quaternions can be defined by a matrix def x1 e2 x2 x3 e2 x4 x3 e2 x4 x1 e2 x2 x1 , x2 , x3 , x4 x e x x e x y e y y e y x1 , x2 , x3 , x4 y1 , y2 , y3 , y4 1 2 2 3 2 4 1 2 2 3 2 4 x3 e2 x4 x1 e2 x2 y3 e2 y4 y1 e2 y2 The multiplication rule in equation (4.3) gives a new type of 4 dimensional numbers. Before concluding this section we state another type of useful quaternions, to read Table 5: 4 dimensional numbers . e1 e2 e3 e4 e1 e1 e2 e3 e4 e2 e2 - e1 e4 - e3 - e2 (- e3 ) (m2) e3 e3 - e4 e4 (m1) - e1 e2 - e2 (m1) (4.10) 479 On the construction of N-dimensional hypernumbers - e2 (- e3 ) (m2) e4 e4 e3 - e2 - e1 - e3 (m1) e1 (m1) 5 The 8 dimensional numbers and octonions The octonions are defined by Table 6. Table 6: Octonions ei e j , i, j 1, 2,3, 4,5, 6, 7,8 . e1 e2 e3 e4 e5 e6 e7 e8 e1 e1 e2 e3 e4 e5 e6 e7 e8 e2 e2 - e1 - e4 - e3 - e6 - e5 - e8 e7 e3 e3 - e4 - e1 e2 e7 e8 - e6 - e6 e4 e4 e3 - e2 - e1 e8 - e7 e6 - e5 e5 e5 - e6 - e7 - e8 - e1 e2 e3 e4 e6 e6 e5 - e8 e7 - e2 - e1 - e4 e3 e7 e7 e8 e5 - e6 - e3 e4 - e1 - e2 e8 e8 - e7 e6 e5 - e4 - e3 e2 - e1 The octonions can be constructed by applying the multiplication rule in equation (4.6) with quaternions as basic elements, to read x , x , x , x , x , x , x , x y , y , y , y , y , y , y , y 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 x1 , x2 , x3 , x4 y1 , y2 , y3 , y4 x5 , x6 , x7 , x8 y5 , y6 , y7 , y8 *, x , x , x , x y , y , y , y x , x , x , x y , y , y , y * 5 6 7 8 5 6 7 8 1 2 3 4 1 2 3 4 The conjugate of x1 , x2 , x3 , x4 * is defined as x1 , x2 , x3 , x4 . We consider the pair of two m1- quaternions (5.1) 480 J.F. Moxnes and K. Hausken x , x , x , x , x , x , x , x x , x , x , x , x , x , x , x 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 (5.2) 8 It would be nice if we can consider one pair of 4 dimensional numbers as one 8 dimensional number. We apply the complex multiplication rule x , x , x , x , x , x , x , x y , y , y , y , y , y , y , y 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 x1 , x2 , x3 , x4 y1 , y2 , y3 , y4 x5 , x6 , x7 , x8 y5 , y6 , y7 , y8 , x1 , x2 , x3 , x4 y5 , y6 , y7 , y8 x5 , x6 , x7 , x8 y1 , y2 , y3 , y4 (5.3) This gives that x , x , x , x , x , x , x , x y , y , y , y , y , y , y , y 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 x1 y1 x2 y2 x3 y3 x4 y4 , x1 y2 x2 y1 x3 y4 x4 y3 , x1 y3 x3 y1 x2 y4 x4 y2 , x1 y4 x4 y1 x2 y3 x3 y2 x5 y5 x6 y6 x7 y7 x8 y8 , x5 y6 x6 y5 x7 y8 x8 y7 , x y x y x y x y , x y x y x y x y 5 7 7 5 6 8 8 6 5 8 8 5 6 7 7 6 x y x y x y x y , x y x y x y x y , 1 5 2 6 3 7 4 8 1 8 2 5 3 8 4 7 x1 y7 x3 y5 x2 y8 x4 y6 , x1 y8 x4 y5 x2 y7 x3 y6 x5 y1 x6 y2 x7 y3 x8 y4 , x5 y2 x6 y1 x7 y4 x8 y3 , x5 y3 x7 y1 x6 y4 x8 y2 , x5 y4 x8 y1 x6 y3 x7 y2 and 8 (5.4) 481 On the construction of N-dimensional hypernumbers x , x , x , x , x , x , x , x y , y , y , y , y , y , y , y 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y , , x1 y2 x2 y1 x3 y4 x4 y3 x5 y6 x6 y5 x7 y8 x8 y7 x y x y x y x y x y x y x y x y , 1 3 3 1 2 4 4 2 5 7 7 5 6 8 8 6 x1 y4 x4 y1 x2 y3 x3 y2 x5 y8 x8 y5 x6 y7 x7 y6 x1 y5 x2 y6 x3 y7 x4 y8 x5 y1 x6 y2 x7 y3 x8 y4 , , x1 y8 x2 y5 x3 y8 x4 y7 x5 y2 x8 y1 x7 y4 x8 y3 x y x y x y x y x y x y x y x y , 1 7 3 5 2 8 4 6 5 3 7 1 6 4 8 2 x1 y8 x4 y5 x2 y7 x3 y6 x5 y4 x8 y1 x6 y3 x7 y2 (5.5) Thus we achieve that e2 e2 e1 , e3 e3 e1 , e4 e4 e1 , e5 e5 e1 , e6 e6 e1 , e7 e7 e1 , e8 e8 e1 e3 e4 e2 , e5 e6 e2 , e7 e8 e2 e2 e4 e3 , e5 e7 e3 , e6 e8 e3 e2 e3 e4 , e5 e8 e4 , e6 e7 e4 , (5.6) e2 e6 e5 , e3 e7 e5 , e4 e8 e5 , e2 e5 e6 , e3 e8 e6 , e4 e7 e6 , e3 e5 e7 , e2 e8 e7 , e4 e6 e7 , e4 e5 e8 , e2 e7 e8 , e3 e6 e8 , This gives Table 7. Table 7: 8 dimensional numbers. ei e j , i, j 1, 2,3, 4,5, 6, 7,8 . e1 e2 e3 e4 e5 e6 e7 e8 e1 e1 e2 e3 e4 e5 e6 e7 e8 e2 e2 - e1 - e4 - e3 - e6 (o) - e5 - e8 e7 e4 (m1) - e3 (m1) e6 (m1) - e8 (m1) - e5 (m1) e3 e3 - e4 e4 (m1) - e1 e7 (m1) - e6 (o) e2 e7 e8 - e2 (m1) e7 (m1) e8 (m1) - - e6 - 482 e4 e5 e6 J.F. Moxnes and K. Hausken e4 e5 e6 e3 (q) - e2 - e1 e8 - e3 (m1) - e2 (m1) e1 (m1) e8 (m1) - - e6 - e7 - e8 e6 (m1) e7 (m1) e8 (m1) - e1 - e7 e8 e7 e8 e6 (m1) e6 - e5 - e5 (m1) e7 (m1) e6 (m1) e2 e3 e4 - e2 - - e3 (m1) e4 (m1) - e4 e3 e5 - e8 e7 - e2 - e1 - e5 (m1) e8 (m1) - e7 (m1) - e1 (m1) - e2 (m1) e7 e5 (m1) e3 (m1) e4 (m1) e8 e5 - e6 - e3 e4 - e1 - e2 e8 (m1) - e5 (m1) e6 (m1) - - e1 (m1) e2 (m1) e3 (m1) e4 (m1) - e1 - e7 e6 e5 - e4 - e3 e2 - e7 (m1) - e6 (m1) e5 (m1) - e3 (m1) e2 (m1) e4 (m1) The sedenions can be constructed by applying two octonions as a pair. 6 N-dimensional numbers which add as vectors Assuming that numbers add as vectors, in this section we construct N dimensional numbers quite generally, where N 2k , k=0,1,2,.... For 2 dimensions we set that mod ( x1 , x2 ) ( y1 , y2 ) x1 y1 , x2 y2 , xi R mod ( x1 , x2 ) ( y1 , y2 ) x1 y1 x2 y1c1 x2 y2 d1 , x1 y2 x2 y1c2 x2 y2 d 2 (6.1) On the construction of N-dimensional hypernumbers 483 If we apply that multiplication commutes, it follows that c1 0, c2 1 . We observe that ( x1 , 0) ( y1 , y2 ) x1 y1 , x1 y2 , (0,1) (0,1) d1 , d 2 . To construct higher dimensions we set that mod N 2 : x1 , x2 y1 , y2 x1 y1 , x2 y2 mod x1 , x2 y1 , y2 x1 y1 x2 y1c1 x2 y2 d1 , x1 y2 x2 y1c2 x2 y2 d 2 N 4 : x1 , x2 , x3 , x4 x1 , x2 , x3 , x4 X 21 , X 2 2 mod X 21 , X 2 2 Y 21 , Y 2 2 X 21 Y 21 , X 2 2 Y 22 mod X 21 , X 2 2 Y 21 , Y 22 X 21 Y 21 X 22 Y 21c1 X 2 2 Y 22 d1 , X 21 Y 22 X 2 2 Y 21c2 X 2 2 Y 2 2 d2 N 8 : x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 X 41 , X 4 2 X X mod 4 1 , X 4 2 Y 41 , Y 4 2 X 41 Y 41 , X 4 2 Y 4 2 4 1 , X 4 2 Y 41 , Y 4 2 X 41 Y 41 X 4 2 Y 41c1 X 4 2 Y 4 2 d1 , X 41 Y 4 22 X 4 2 Y 41c2 X 4 2 Y 4 2 d 2 mod N 2k n : X X mod n 1 , X n 2 Y n1 , Y n 2 X n1 Y n1 , X n 2 Y n 2 n 1 , X n 2 Y n1 , Y n 2 X n1 Y n1 X n 2 Y n1c1 X n 2 Y n 2 d1 , X n1 Y n 22 X n 2 Y n1c2 X n 2 Y n 2 d 2 mod (6.2) In this way we construct all high dimensional numbers of the type N 2k . For odd dimensions where N 2k 1 we set that c1 d1 0 . Thus mod ( x1 , x2 ) ( y1 , y2 ) x1 y1 , x1 y2 x2 y1c2 x2 y2 d 2 x1 , x2 , x3 ,....x2 k , x2k 1 x1 , 0 , x2 , x3 , x4 ,...., x2 k X 1 , X 2 k 2 X , X Y , Y X Y , X X , X Y , Y X Y , X Y 2k 1 2k 2 1 2k 1 2k 2 1 2 1 1 1 2k 2 1 1 2k 2 Y 2 2k 2 (6.3) X 2 k 2 Y1 d 2 X 2 k 2 Y 2 k 2 7 Other types of numbers; the rational numbers of higher dimension Contrary to the earlier sections, in this section we do not assume that numbers add as vectors. We denote the whole numbers together with zero as Z 0 . We define multiplication and addition of a 2 dimensional number by 484 J.F. Moxnes and K. Hausken def ( x1 , x2 ) ( y1 , y2 ) ( x1 y2 y1 x2 , x2 y2 ), (a ), x1 , x2 , y1 , y2 Z 0 (7.1) def ( x1 , x2 ) ( y1 , y2 ) ( x1 y1 , x2 y2 ), (b), It is easily observed that the set of numbers of the type ( x1 ,1) is isomorphic to the numbers in Z 0 since ( x1 ,1) ( y1 ,1) ( x1 y1 ,1), ( x1 ,1) ( y1 ,1) ( x1 y1 ,1) (7.2) (0,1) is the zero element. Notice that 1 instead of 0 acts as the crucial second element to construct a subgroup that gives numbers isomorphic to Z 0 . Also notice that ( x1 ,1) ( y1 , y2 ) ( x1 y1 , y2 ) . Thus we do not multiply x1 with y2 . However we can also study the numbers of the type (0, x2 ) , to read (0, x2 ) (0, y2 ) (0, x2 y2 ), (a ), (0, x2 ) (0, y2 ) (0, x2 y2 ), (b), (7.3) These numbers have the peculiar property that the sum of two numbers equals the product of two numbers. The zero element is (0, 0) . However, to use these numbers we must know how to calculate x2 y2 . We do not need to know how to sum two numbers x2 y2 . Returning to equation (7.1), the distributive law is not fulfilled since ( x1 , x2 ) ( y1 , y2 ) ( z1 , z2 ) ( x1 y2 y1 x2 , x2 y2 ) ( z1 , z2 ) ( x1 y2 y1 x2 ) z1 , x2 y2 z2 x1 y2 z1 y1 x2 z1 , x2 y2 z2 (7.4) ( x1 , x2 ) ( z1 , z2 ) ( y1 , y2 ) ( z1 , z2 ) ( x1 z1 , x2 z2 ) ( y1 z1 , y2 z2 ) x1 y2 z1 z 2 y1 x2 z1 z2 , x2 y2 z2 z2 485 On the construction of N-dimensional hypernumbers In particular we have that (2,1) ( x1 , x2 ) (2 x1 , x2 ) , and that ( x1 , x2 ) ( x1 , x2 ) (2 x1 x2 , x2 2 ) . It would be nice if these two numbers could be conceived as equal and also that the distributive law is fulfilled. To show that these two requirements are satisfied, we define def x1 / x2 {( x1 x, x2 x)}, x Z 0 . We then have x1 / x2 y1 / y2 ( x1 x, x2 x) ( y1 y, y2 y ) ( x1 y2 xy y1 x2 xy , x2 y2 xy ) ( x1 y2 y1 x2 ) /( x2 y2 ) x1 / x2 y1 / y2 ( x1 x, x2 x ) ( y1 y, y2 y ) ( x1 y1 xy, x2 y2 dxy ) x1 y1 /( x2 y2 ) (7.5) It is easily verified that the distributive law is fulfilled. For simplicity we write x1 , x2 x1 x, x2 x = x1 / x2 ) which is called a rational number. We have that 1, 2 1, 2 2 2, 2 2 4, 4 1,1 (7.6) So one half + one half is indeed one. However, we have that 1,1 1, 2 2 1, 2 3, 2 (7.7) This is a number different from x,1 . We like to put the rational number on the so called real x-axis. Consider a minimum stick to measure lengths. Consider that straight lines are constructed between two arbitrary points in space (Moxnes and Hausken 2011). We define the straight line to be the x-axis which is constructed by discrete points (0,1), (1,1), (2,1), .... We would like to put (1,2) between (0,1) and (1,1), but there are actually no points between (0,1) and (1,1). However, assume that we transport (1,1) to (2,1) (1,1) = (2,1) and (2,1) to (2,1) (2,1) = (4,1). Then we have that (1,2) to (2,1) (1,2)= (1,1). Thus we can put (1,2) between (0,1) and (1,1). More generally we use the general ( x1 ,1) ( y1 , y2 ) ( x1 y1 , y2 ) it follows that formalism (2.7). If we desire that 486 J.F. Moxnes and K. Hausken mod x y a x y b x y c x y d e x f x g y h y , 1 1 1 2 ( x1 , x2 ) ( y1 , y2 ) 1 1 1 1 2 1 2 1 1 2 2 1 1 1 1 2 x1 y1a2 x1 y2 b2 x2 y1c2 x2 y2 d 2 e2 x1 f 2 x2 g 2 y1 h2 y2 x y a x y b yc y d e x f g y h y , ( x1 ,1) ( y1 , y2 ) 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 2 ( x1 y1 , y2 ) x1 y1a2 x1 y2 b2 y1c2 y2 d 2 e2 x1 f 2 g 2 y1 h2 y2 a1 d 2 , a2 0, b1 b2 0, c1 c2 0, d1 0 e1 e2 f1 f 2 g1 g 2 h1 h2 (7.8) ( x1 , x2 ) ( y1 , y2 ) x1 y1a1 , x2 y2 d 2 For the addition rule we would like that (2,1) ( x1 , x2 ) (2 x1a1 , x2 d 2 ) = ( x1 , x2 ) ( x1 , x2 ) . Using the general equation (2.9) we achieve that mod x x a ' x x b ' x x c ' x x d ' e ' x f ' x g ' x h ' x , 1 1 1 1 2 1 2 1 1 2 2 1 1 1 1 2 1 1 1 2 ( x1 , x2 ) ( x1 , x2 ) (2 x1a1 , x2 d 2 ) x1 x1a2 ' x1 x2 b2 ' x2 x1c2 ' x2 x2 d 2 ' e2 ' x1 f 2 ' x2 g 2 ' x1 h2 ' x2 b1 ' c1 ' a1 , d 2 ' d 2 , a1 ' a2 ' c2 ' d '1 e1 ' e2 ' f1 ' f 2 ' g1 ' g 2 ' h1 ' h2 ' 0 (7.9) Only this solution is feasible if we assume symmetry during summation. Thus we have the general construction ( x1 , x2 ) ( y1 , y2 ) ( x1 y2 x2 y1 )a1 , x2 y2 d 2 , ( x1 , x2 ) ( y1 , y2 ) x1 y1a1 , x2 y2 d 2 (7.10) However, although these numbers have some interesting properties that can be explored, we will further set that a1 = d 2 = 1. This gives that ( x1 ,1) ( y1 ,1) ( x1 y1 ),1 and ( x1 ,1) ( y1 ,1) x1 y1 ,1 . To construct a 4 dimensional number we use that ( x1 , x2 , x3 , x4 ) ( x1 , x2 ), ( x3 , x4 ) . Thus we have when we use the rules in (7.1) that On the construction of N-dimensional hypernumbers 487 ( x1 , x2 , x3 , x4 ) ( x1 , x2 ), ( x3 , x4 ) ( x1 , x2 , x3 , x4 ) ( y1 , y2 , y3 , y4 ) ( x1 , x2 ), ( x3 , x4 ) ( y1 , y2 ), ( y3 , y4 ) ( x1 , x2 ) ( y1 , y2 ), ( x3 , x4 ) ( y3 , y4 ) ( x1 y1 , x2 y2 ), ( x3 x4 , x4 y4 ) x1 y1 , x2 y2 , x3 y3 , x4 y4 (7.11) ( x1 , x2 , x3 , x4 ) ( y1 , y2 , y3 , y4 ) ( x1 , x2 ), ( x3 , x4 ) ( y1 , y2 ), ( y3 , y4 ) ( x1 , x2 ) ( y3 , y4 ) ( y1 , y2 ) ( x3 , x4 ), ( x3 , x4 ) ( y3 , y4 ) ( x1 y3 , x2 y4 ) ( y1 x3 , y2 x4 ), ( x3 y3 , x4 y4 ) ( x1 y3 y2 x4 y1 x3 x2 y4 , x2 y4 y2 x4 ), ( x3 y3 , x4 y4 ) x1 y3 y2 x4 y1 x3 x2 y4 , x2 y4 y2 x4 , x3 y3 , x4 y4 In this way we can construct all numbers of dimension N 2k , to read N 2 x1 , x2 y1 , y2 x1 y2 y1 x2 , x2 y2 x1 , x2 y1 , y2 x1 y1 , x2 y2 N 4, ( x1 , x2 , x3 , x4 ) ( x1 , x2 ), ( x3 , x4 ) X 21 , X 2 2 X X 2 1 , X 2 2 Y 21 , Y 2 2 X 21 Y 2 2 Y 21 X 2 2 , X 2 2 Y 2 2 2 1 , X 2 2 Y 21 , Y 2 2 X 21 Y 21 , X 2 2 Y 2 2 (7.12) N 2k n X X n 1 , X n 2 Y n1 , Y n 2 X n1 Y n 2 Y n1 X n 2 , X n 2 Y n 2 n 1 , X n 2 Y n1 , Y n 2 X n1 Y n1 , X n 2 Y n 2 We can check whether all lower dimensional numbers are special cases. We in particular check whether the 3 dimensional numbers are of the type ( x1 , x2 , x3 ,1) and whether the 2 dimensional numbers are of the type ( x1 , x2 ,1,1) , to read ( x1 , x2 , x3 ,1) ( y1 , y2 , y3 ,1) x1 y1 , x2 y2 , x3 y3 ,1 ( x1 , x2 , x3 ,1) ( y1 , y2 , y3 ,1) x1 y3 y2 y1 x3 x2 , x2 y2 , x3 y3 ,1 (7.13) ( x1 , x2 ,1,1) ( y1 , y2 ,1,1) x1 y1 , x2 y2 ,1,1 ( x1 , x2 ,1,1) ( y1 , y2 ,1,1) x1 y2 y1 x2 , x2 y2 ,1,1 488 J.F. Moxnes and K. Hausken Thus ( x1 , x2 , x3 ,1) and ( x1 , x2 ,1,1) are viable 3 and 2 dimensional numbers. We like to position (1,2) on the real x axis of the Euclidean geometry. We position (1,1,2)= (1,1,2,1) as follows (1,1, 2,1) (1,1, 2,1) (2 2,1, 4,1) (4,1, 4,1) (1,1,1,1) (1, 2,1,1) (1, 2,1,1) (2 2, 4,1,1) (4, 4,1,1) (1,1,1,1) (7.14) As a mixed structure assume that the pairs in equation (7.11) are complex numbers. We then achieve that ( x1 , x2 , x3 , x4 ) ( x1 , x2 ), ( x3 , x4 ) ( x1 , x2 ), ( x3 , x4 ) ( y1 , y2 ), ( y3 , y4 ) ( x1 , x2 ) ( y1 , y2 ), ( x3 , x4 ) ( y3 , y4 ) ( x1 y1 x2 y2 , x1 y2 x2 y1 ),( x3 y3 x4 y4 , x3 y4 x4 y3 ) x1 y1 x2 y2 , x1 y2 x2 y1 , x3 y3 x4 y4 , x3 y4 x4 y3 ( x1 , x2 ), ( x3 , x4 ) ( y1 , y2 ), ( y3 , y4 ) ( x1 , x2 ) ( y3 , y4 ) ( y1 , y2 ) ( x3 , x4 ), ( x3 , x4 ) ( y3 , y4 ) ( x1 y3 x2 y4 , x1 y4 x2 y3 ) ( y1 x3 y2 x4 , y1 x4 y2 x3 ), ( x3 y3 x4 y4 , x3 y4 x4 y3 ) x1 y3 x2 y4 y1 x3 y2 x4 , x1 y4 x2 y3 y1 x4 y2 x3 , x3 y3 x4 y4 , x3 y4 x4 y3 (7.15) 8 The most general construction In this section we construct an even more general structure for N dimensional numbers, where N 2k , k=0,1,2,.... Assume that in 2 dimensions where the elements x1 , x2 , y1 , y2 R mod ( x1 , x2 ) ( y1 , y2 ) ( f1 x1 , x2 , y1 , y2 , f 2 x1 , x2 , y1 , y2 ), (a ), mod (8.1) ( x1 , x2 ) ( y1 , y2 ) ( g1 x1 , x2 , y1 , y2 , g 2 x1 , x2 , y1 , y2 ), (b), where f1 , f 2 , g1 g 2 are arbitrary functions. Assume that we desire that ( x1 , x2 ) ( y1 , y2 ) = ( y1 , y2 ) ( x1 , x2 ) and that ( x1 , x2 ) ( y1 , y2 ) = ( y1 , y2 ) ( x1 , x2 ) . This gives that 489 On the construction of N-dimensional hypernumbers ( x1 , x2 ) ( y1 , y2 ) ( f1 x1 , x2 , y1 , y2 , f 2 x1 , x2 , y1 , y2 ) ( f1 y1 , y2 , x1 , x2 , f 2 y1 , y2 , x1 , x2 ), f1 x1 , x2 , y1 , y2 f1 y1 , y2 , x1 , x2 , f 2 x1 , x2 , y1 , y2 f 2 y1 , y2 , x1 , x2 (8.2) ( x1 , x2 ) ( y1 , y2 ) ( g1 x1 , x2 , y1 , y2 , g 2 x1 , x2 , y1 , y2 ) ( g1 y1 , y2 , x1 , x2 , g 2 y1 , y2 , x1 , x2 ) g1 x1 , x2 , y1 , y2 g1 y1 , y2 , x1 , x2 , g 2 x1 , x2 , y1 , y2 g 2 y1 , y2 , x1 , x2 , However, a very strong condition can be applied for what we indeed will call numbers. This means that for some number b D1: ( x1 , b) ( y1 , b) ( x1 y1 , b), D 2 : ( x1 , b) ( y1 , b) ( x1 y1 , b) (8.3) D3: ( x1 , x2 ) ( x1 , x2 ) (2, b) (ax1 , ax2 ), a R This gives that D1: ( x1 , b) ( y1 , b) ( f1 x1 , b, y1 , b , f 2 x1 , b, y1 , b ) x1 y , b D 2 : ( x1 , b) ( y1 , b) ( g1 x1 , b, y1 , b , g 2 x1 , b, y1 , b ) x1 y1 , b D3 : f1 x1 , x2 , x1 , x2 , f 2 x1 , x2 , x1 , x2 (2, b) (ax1 , ax2 ) ( g1 2, b, ax1 , ax2 , g 2 2, b, ax1 , ax2 ) (8.4) For N= 2^k and N=2k+1 dimensions we can construct these by using pairs analogous to the construction in the earlier sections. 9 Conclusion Complex numbers extend the concept of the 1 dimensional numbers to 2 dimensions. Quaternions extend numbers to 4 dimensions. Octonions and sedenions are extensions to 8 and 16 dimensions respectively. We study a general form of complex numbers, various axiomatic structures of 3 dimensional numbers, and finally N dimensional numbers, N 2k , k=0,1,2,.... Quaternions, octonions and sedenions are special cases. Two different structures for addition are studied. 490 J.F. Moxnes and K. Hausken References Baez J. (2002), The octonions. Bull. Amer. Math. Soc., 39, 145-205. Carmondy K., (1988), Circular and hyperbolic quaternions, octonions and sedenions. Appl. Math. Comput., 28, 47-72. Cayley A., (1845), Philos. Mag. (London), ser. 3, 26. Cockle J. (1848), A new imaginary algebra. London-Edinburgh-Dublin Philosophical magazine(3), 33, 435-439. Clifford W.K., (1873), Proc. Lond. Math. Soc. 4, 381-395. Clifford W.K., (1882), Mathematical Works. Ed. by A.W. Tucker pp. 392, “Further notes on biquaternions. Carmondy K., (1988), Circular and hyperbolic quaternions, octonions and sedenions. Appl. Math. Comput., 28, 47-72. Carmondy K., (1997), Circular and hyperbolic quaternions, octonions, and sedenions -further results. Appl. Math. Comput., 84, 27-47. Conway J.H., Smith D.A., (2003), On quaternions and Octonions: their Geometry, Arithmetic and Symmetry. A. K. Peters, Ltd. ISBN 1-56881-134-9. Evans D.J., (1977), On the representation of orientation space. Mol. Phys., 34, 317. Girard P.D., (1984), The quaternion group and modern physics. Eur. J. Phys., 5, 25-32. Hamilton W.R., (1969), Lectures on quaternions. 3rd ed., Chelsea, New York Viol, I, Chapters, II,III. Muses C., (1976), Applied hypernumbers. Computational concepts. Appl. Math. Comput, 3, 211-216. Muses C., (1980), Hypernumbers and quantum field theory with summary of physically applicable hypernumber arithmetics and their geometries. Appl. Math. Comput., 6, 6394. Muses C., (1994), Hypernumbers applied or how they interface with the physical world. Appl. Math. Comput., 60, 25-36. Nahin P.J., (1998), An imaginary tail: The story of -1^0.5 (hardcover ed). Princeton University Press, ISBN 0-691-02795-1.