Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
argument of product and quotient∗ pahio† 2013-03-22 0:16:14 Using the distributive law, we perform the multiplication (cos ϕ1 +i sin ϕ1 )(cos ϕ2 +i sin ϕ2 ) = (cos ϕ1 cos ϕ2 −sin ϕ1 sin ϕ2 )+i(sin ϕ1 cos ϕ2 +cos ϕ1 sin ϕ2 ). Using the addition formulas of cosine and sine we still obtain the formula (cos ϕ1 + i sin ϕ1 )(cos ϕ2 + i sin ϕ2 ) = cos(ϕ1 + ϕ2 ) + i sin(ϕ1 + ϕ2 ). (1) The inverse number of cos ϕ2 + i sin ϕ2 is calculated as follows: cos ϕ2 − i sin ϕ2 1 cos ϕ2 − i sin ϕ2 = = cos ϕ2 + i sin ϕ2 (cos ϕ2 − i sin ϕ2 )(cos ϕ2 + i sin ϕ2 ) cos2 ϕ2 + sin2 ϕ2 This equals cos ϕ2 − i sin ϕ2 , and since the cosine is an even and the sine an odd function, we have 1 = cos(−ϕ2 ) + i sin(−ϕ2 ). cos ϕ2 + i sin ϕ2 (2) The equations (1) and (2) imply cos ϕ1 + i sin ϕ1 = (cos ϕ1 +i sin ϕ1 )(cos(−ϕ2 )+i sin(−ϕ2 )) = cos(ϕ1 +(−ϕ2 ))+i sin(ϕ1 +(−ϕ2 )), cos ϕ2 + i sin ϕ2 i.e. cos ϕ1 + i sin ϕ1 = cos(ϕ1 − ϕ2 ) + i sin(ϕ1 − ϕ2 ). cos ϕ2 + i sin ϕ2 (3) According to the formulae (1) and (3), for the complex numbers z1 = r1 (cos ϕ1 + i sin ϕ1 ) and z2 = r2 (cos ϕ2 + i sin ϕ2 ) we have z1 z2 = r1 r2 (cos(ϕ1 + ϕ2 ) + i sin(ϕ1 + ϕ2 )), ∗ hArgumentOfProductAndQuotienti created: h2013-03-2i by: hpahioi version: h40208i Privacy setting: h1i hTheoremi h30-00i h26A09i † This text is available under the Creative Commons Attribution/Share-Alike License 3.0. You can reuse this document or portions thereof only if you do so under terms that are compatible with the CC-BY-SA license. 1 z1 r1 = (cos(ϕ1 − ϕ2 ) + i sin(ϕ1 − ϕ2 )). z2 r2 Thus we have the Theorem. The modulus of the product of two complex numbers equals the product of the moduli of the factors and the argument equals the sum of the arguments of the factors. The modulus of the quotient of two complex numbers equals the quotient of the moduli of the dividend and the divisor and the argument equals the difference of the arguments of the dividend and the divisor. Remark. The equation (1) may be by induction generalised for more than two factors of the left hand side; then the special case where all factors are equal gives de Moivre identity. Example. Since π (2+i)(3+i) = 5+5i = 5e 4 , one has arctan 1 π 1 + arctan = . 2 3 4 2