Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Benjamin T Solomon
iSETI LLC
P.O. Box 831
Evergreen, CO 80439
http://www.iSETI.us/
ben . t . solomon @ gmail . com
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
1
02/26/2009
Research Objective: To change the way we get into space – if possible
without momentum exchange.
Vision: To have a 1,000,000 private citizens in space by the year 2020 (?)
2008: An Introduction to Gravity Modification: A Guide to Using
Laithwaite's and Podkletnov's Experiments and the Physics of Forces
for Empirical Results, Universal Publishers, Boca Raton.
2001 – Current: Numerous presentations & papers on gravity
modification at the International Space Development Conferences &
the International Mars Society Conferences.
1999: Inventor of proprietary electrical circuits (with no moving parts)
that can change weight (± 3% to ± 5% over 2 hours & one 98% loss for
about a minute). An engine technology without moving parts.
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
2
Summary
Theoretical Basis
Applications
Gravitational Ni Field
Mechanical Ni Field
Simple Mechanical Force
Complex Mechanical Force
02/26/2009
Electromagnetic Ni Field
Conclusion
Acknowledgements
Bibliography
Contact
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
3
Acceleration is defined as:
g = τ c2
02/26/2009
Where τ = dt/dr, change in time dilation over the
change in distance.
Gravitational constant, G, goes away.
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
4
g = τc2 is the general formula for all non-nuclear forces.
A Non-Inertia Field, Ni Field, is present when τ changes
with distance.
Nuclear Forces
Non-Nuclear Forces
Not Interested
in Investigating
these Forces
Gravitational Force
g = τc2
Mechanical Force
?
g = τc2
Electromagnetic Force
g = τc2
?
Strong Nuclear Force
Weak Force
Five Forces Model
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
5
Acceleration, a
V1
V2
V3
V4
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
6/47
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
7
02/26/2009
General Relativity models gravity as the change in the shape
of spacetime by the some GR, Γs(x,y,z,t) , transformation.
I propose that in a gravitational field a particle’s shape
changes and is governed by some transformation, Γp(x,y,z,t).
Such that:
Γp(x,y,z,t) = Γs(x,y,z,t)
I am pioneering the use of Process Models, not tensor
calculus, quantum mechanical or string theory
methods/models.
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
8
No applied
transformation.
Particle continues in
Inertial
Applied transformation
is equivalent to a
downward Force.
Particle makes a 90
degree downward turn.
No applied
transformation.
Particle continues
downward
Second applied
transformation is
equivalent to a horizontal
force. Particle makes a 90
degree horizontal turn.
02/26/2009
No applied
transformation.
Particle continues in
Inertial
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
9/47
To develop a gravitational acceleration model, a force
field model, that is independent of the mass of the
gravitational source.
Three steps to the shape change analysis:
02/26/2009
Step A: Determine equation of the shift in the center of mass of
a particle in a gravitational field.
Step B: Invert the relationship so that gravitational acceleration
is presented as a shift in the center of mass.
Step C: Relate this shift in the center of mass to shape distortion
Γp(x,y,z,t).
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
10
Inertia Lorentz-Fitzgerald Transformation:
(v) 1 / (1- v 2 / c 2 ) x0 / xv tv / t0 mv / m0
Non-Inertia Newtonian Transformation**:
(a) 1/ (1- 2GM / rc 2 ) x0 / xa ta / t0 ma / m0
Non-Inertia General Relativity Transformation**, Γ(r):
These two types of transformations govern the relationship
between space, time, velocity and acceleration.
** The Newtonian Transformation is sufficient for our discussion.
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
11
TABLE (1). Comparison of gravitational acceleration time dilation with velocity time dilation.
Object
Mass at
Surface
Radius
Gravitational Gravitational Gravitational Time LorentzVelocity
Acceleration Escape or Free Dilation
Fitzgerald
Error
Fall Velocit
Equivalent
Velocity
2
2 2
ve - vf
g = GM/r
ve = 2GM/r t v = t / 1 - 2GM/rc 2 vf = c / 1 - t /t v
M (kg)
r (m)
g (m/s2)
ve (m/s)
tv (s)
vf (m/s)
(%)
Sun
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto
2.00E+30
3.59E+23
4.90E+24
5.98E+24
6.58E+23
1.90E+27
5.68E+26
8.67E+25
6.90E+08
2.44E+06
6.07E+06
6.38E+06
3.39E+06
7.14E+07
5.99E+07
2.57E+07
274.98
3.70
8.87
9.80
3.71
23.12
8.96
7.77
621,946
4,431
10,383
11,187
5,087
59,618
35,566
21,201
1.00000215195969
1.00000000010922
1.00000000059976
1.00000000069626
1.00000000014395
1.00000001977343
1.00000000703708
1.00000000250060
621,946
4,431
10,383
1,187
5,087
59,618
35,566
21,201
0.0000000%
0.0000153%
0.0000018%
-0.0000080%
0.0000245%
0.0000002%
-0.0000002%
-0.0000005%
11.00
0.72
23,552
1,178
1.00000000308580
1.00000000000772
23,552
1,178
-0.0000019%
0.0001586%
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
1.03E+26 2.47E+07
1.20E+22 1.15E+06
Benjamin T Solomon
12
One infers that these two types of non-inertia , Γ(a) or
Γ(r), and inertia , Γ(v), transformations are equivalent
and different aspects of a more generic nature.
One can generalize that transformations present in
spacetime are such that given any local environmental
transformation, Γ(e), space contraction, time dilation
and mass increase obeys:
(e) x0 / xe te / t0 me / m0
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
13
Therefore, the gravitational field is a non-inertia field
that obeys the relationship,
(e) x0 / xe te / t0 me / m0
02/26/2009
And that an elementary particle’s deformation must
obey
Γp(x,y,z,t) = Γ(e)
Shape deformation would necessarily result in the
change in the center of mass.
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
14
Roger Penrose, in the 1950s, showed that
a macro object would elongate as it fell
down a gravitational well.
At infinity
The Lorentz-Fitzgerald &
Newtonian transformations
suggest that elementary particles
of this macro object would
contract as they fell down a
gravitational well.
Gravitational
Field
However, the distances between
them would increase, accounting
for the macro elongation.
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
At mass
source
Benjamin T Solomon
15
Center of Mass in a gravitational field, Ф, is:
x dx 2
R 2
CM Φ
y
Γ(x)dx
y Γ(x)dx
L
0 Γ(x)
R
L
Where Γ(x) is:
Γ(x) = 1 / 1 - 2GM/(r x)c2
02/26/2009
The solution runs into several pages and is not
presented here.
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
16
Numerical Model
consists of 2,000
slices
Center of Mass of
Particle, is off center
A slice of the top half of
an elementary particle
Gravitational
Source
Shape distortion, Left Hand Side is longer than Right Hand Side
Mass increases non-linearly as dictated by the Newtonian
transformation
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
17
The numerical formulation for the center of mass, CM,
per Step A, for a given shape function, y, is:
CM
02/26/2009
q 0.5q y q ρ y q ρ
i
i 1
i
2
i i
i
i
2
i i
i
To test for effects of particle shape and mass
distribution 1,190 numerical integrations were
evaluated for 7 particles sizes from 10E-21m, smaller
than an electron, up to 10E-3m, a small pin head;
modeled in 10 gravitational fields, with 17 shapes or
mass distributions.
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
18
Cross Sectional Mass As Projected Along Plane of Motion
for Center of Mass Calculations
0.0018
0.0016
Crown
Hollow Sphere
0.0014
Sphere
Proportion of Mass
0.0012
Cube
0.001
Flat Normal
Gaussian 3D/1S
0.0008
Gaussian 3D/3S
0.0006
-1500
-1000, 5.31377E-08
-1000
-500
Line
0.0004
2D Multivariate Normal
0.0002
3D Multivariate Normal
(Product)
0
0
500
1000
1500
Model Slice Number
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
19
TABLE (2). Sample Result: Center of mass shift in different gravitational fields for a 10-11m spherical particle.
Planet
Pluto
Mercury
Mars
Uranus
Venus
Saturn
Earth
Neptune
Jupiter
Sun
02/26/2009
Gravitational
Acceleration,
g (m/s2)
g = GM/r 2
0.6054524
4.0235485
3.8205065
8.7588541
8.8738716
10.5630450
9.8028931
11.2651702
24.8686161
280.3020374
Shift in the
Center of Mass
(m)
Numerical
Integration Results
1.6904307E-41
1.1233798E-40
1.0666902E-40
2.4454830E-40
2.4775960E-40
2.9492154E-40
2.7369800E-40
3.1452496E-40
6.9433487E-40
7.8260679E-39
Time Dilation
(s)
tx 0
Change in Time
Dilation Across
the Particle
t ti L ti R
1.000000000007740
1.000000000109230
1.000000000144100
1.000000002504600
1.000000000599320
1.000000007040030
1.000000000695870
1.000000003095940
1.000000019756420
1.000002151965680
6.7298299E-29
4.4723246E-28
4.2466358E-28
9.7357940E-28
9.8636402E-28
1.1741220E-27
1.0896282E-27
1.2521658E-27
2.7642398E-27
3.1156754E-26
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Particle Size in
the Gravitational
Field
S Z ii LR xi
9.9950000E-12
9.9950000E-12
9.9950000E-12
9.9950000E-12
9.9950000E-12
9.9950000E-12
9.9949999E-12
9.9950000E-12
9.9949998E-12
9.9949785E-12
Benjamin T Solomon
20
Gravitational acceleration g is governed by:
g k d / S GM / r
2
g kct / S z GM / r
2
z
2
Change in the center of mass χ :
kmtSz
02/26/2009
where kd, km, & kc are constants, δt, change in time
dilation across the particle for a specific particle size, Sz.
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
21
TABLE (2). Regression results on 1,190 numerical integration output to determine the value of the constant terms.
Mass Distribution
Cube
Gaussian 3D/3S
Line
Sphere
2D Multivariate Normal
3D Multivariate Normal
(Product)
3D Multivariate Normal
(Distance)
Crown
Hollow Sphere
Photon (1Wavelength)
Photon (3Wavelength)
Flat 2D/3S Normal
Gaussian 3D/20S
Gaussian 3D/1S
2D/3S Normal 1 Wavelength
2D/3S Normal 7 Wavelengths
Sphere without Mass
02/26/2009
(χ = kd δt Sz)
kd
4.1853921213E-02
7.0282538609E-03
4.1853921213E-02
2.5130987253E-02
1.3257171674E-02
9.6884143131E-03
(g = km χ / Sz2)
km
2.1484226203E+18
1.2794061350E+19
2.1484226203E+18
3.5780492893E+18
6.7827371698E+18
9.2811793732E+18
(g = kc δt / Sz)
kc
8.9919903936E+16
8.9919067374E+16
8.9919067374E+16
8.9919067374E+16
8.9919067374E+16
8.9919067374E+16
km kd
8.9919911081E+16
8.9919911081E+16
8.9919911081E+16
8.9919911081E+16
8.9919911081E+16
8.9919911081E+16
4.2911146520E-02
2.0954907611E+18
8.9919067374E+16
8.9919911081E+16
4.9180742581E-02
4.5512134958E-02
1.3636149279E-02
1.3636149279E-02
1.3636149279E-02
1.6778290618E-04
3.1906623418E-02
2.5130987253E-02
2.5130987253E-02
-2.4896875342E-02
1.8283561077E+18
1.9757348488E+18
6.5942304710E+18
6.5942304710E+18
6.5942304710E+18
5.3592085948E+20
2.8181722053E+18
3.5780492893E+18
3.5780492893E+18
-3.6116323051E+18
8.9919067374E+16
8.9919067374E+16
8.9919067374E+16
8.9919067374E+16
8.9919903936E+16
8.9919067374E+16
8.9919067374E+16
8.9919067374E+16
8.9919067374E+16
8.9919067374E+16
8.9919911081E+16
8.9919911081E+16
8.9919911081E+16
8.9919911081E+16
8.9919911081E+16
8.9918359284E+16
8.9918359284E+16
8.9919911081E+16
8.9919911081E+16
8.9918359283E+16
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
22
02/26/2009
Per Step C, one notes that the two constant terms kd
and km are sufficient to parameterize any shape and
mass distribution of a particle.
The result of this three-step analysis is that
gravitational acceleration g is governed by the change
in time dilation δt across a particle of size Sz, where kc is
some constant
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
23
The numerical value of kc is within 0.049% of the
numerical value of the square of the velocity of light or
8.9875517873681764E+16.
Since Sz is the change in the distance δr from the
gravitational source, in the limit as δr→0, becomes
g c dt / dr .c GM / r
2
02/26/2009
2
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
2
Benjamin T Solomon
24
02/26/2009
The common Ni Field property is testable:
One notes that this particle shape deformation approach
provides the general formula for gravitational acceleration that
is not dependent on the gravitational mass.
Therefore, g=τ.c2, is the general description of a force field, or
the non-inertia field, and is testable.
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
25
02/26/2009
First micro-macro transition mechanism:
Since this gravitational acceleration model works for any
particle size, the precision of measure of a particle’s size is not
critical to getting the correct acceleration values.
Therefore, it appears that Nature has figured out how to get
around Heisenberg’s Uncertainty Principle.
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
26
Second micro-macro transition mechanism:
The values of kd and km change to compensate for any particle
shape or mass distribution such that
kd.km= kc= c2.
02/26/2009
Suggesting an Internal Structure Independence, that
gravitational acceleration is external to and independent of
particle shape or mass distribution inside the particle.
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
27
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
28
Ni Field method,
g = τc2 = (t1-t2)/dr.c2
Time dilation, t2
At infinity
dr
Gravitational
Field
Time dilation, t1
At mass
source
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
29
TABLE (3). Gravitational acceleration values using Newtonian equation and g .c 2 , for a particle diameter of 10-11m.
Solar System body and the
error (%) in g
Gravitational
Acceleration
The far- and near-side distances of the particle edges
from center of gravitational source, are determined by
r R r i R x , and r L r i 0 x ,
i 0
i L
i
Time dilations on the far- and near-side are
given by
t
= 1 / ( 1 - 2GM/ r R c 2 ) and
rR
i
tr L = 1 /
respectively.
(m/s2)
( 1 - 2GM/ r L c 2 ) ,
respectively.
(s)
(m)
Pluto
g = GM/r 2
0.605452401
r+R=
1150000.000000000004997499999961284110
tr+R=
1.000000000007747051447939917851
0.0500250%
g .c
0.605149523
r-L=
1149999.999999999995002500000038715889
tr-L=
1.000000000007747051447939917918
Mars
g = GM/r 2
3.820506452
r+R=
3390000.000000000004997499999279834963
tr+R=
1.000000000144105059780117292718
0.0500250%
g .c 2
3.818595245
r-L=
3389999.999999999995002500000720165036
tr-L=
1.000000000144105059780117293143
Mercury
g = GM/r 2
4.023548458
r+R=
2440000.000000000004997499999454103311
tr+R=
1.000000000109233954602762435823
0.0500250%
g .c 2
4.021535679
r-L=
2439999.999999999995002500000545896688
tr-L=
1.000000000109233954602762436271
Uranus
g = GM/r 2
8.758854078
r+R=
25700000.000000000004997499987483243260
tr+R=
1.000000002504603655997994811634
0.0500243%
g .c 2
8.754472526
r-L=
25699999.999999999995002500012516756739
tr-L=
1.000000002504603655997994812608
Venus
g = GM/r 2
8.873871553
r+R=
6070000.000000000004997499997004886902
tr+R=
1.000000000599322280997788828262
0.0500248%
g .c 2
8.869432414
r-L=
6069999.999999999995002500002995113097
tr-L=
1.000000000599322280997788829249
Earth
g = GM/r 2
9.802893102
r+R=
6380000.000000000004997499996522346225
tr+R=
1.000000000695878694650922876503
0.0500248%
g .c 2
9.797989224
r-L=
6379999.999999999995002500003477653774
tr-L=
1.000000000695878694650922877593
10.56304503
r+R=
59900000.000000000004997499964817446879
tr+R=
1.000000007040030688888887596805
10.55776109
r-L=
59899999.999999999995002500035182553120
tr-L=
1.000000007040030688888887597979
11.26517022
r+R=
24700000.000000000004997499984528012376
tr+R=
1.000000003095945506947560010891
11.25953492
r-L=
24699999.999999999995002500015471987623
tr-L=
1.000000003095945506947560012143
24.86861607
r+R=
71400000.000000000004997499901267250659
tr+R=
1.000000019756428472440154490585
24.85617702
r-L=
71399999.999999999995002500098732749340
tr-L=
1.000000019756428472440154493349
280.3020374
r+R=
690000000.000000000004997489245574647717
tr+R=
280.1636250
r-L=
689999999.999999999995002510754425352282
tr-L=
1.000002151965681928372108336649
1.000002151965681928372108367806
Saturn
0.0500229%
2
g = GM/r
2
g .c 2
2
Neptune
g = GM/r
0.0500241%
g .c 2
Jupiter
0.0500191%
g = GM/r
g .c 2
Sun
g = GM/r
0.0493797%
g .c
02/26/2009
2
2
2
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
30
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
31
The Classical Centripetal Method = Ni Field Method
Classical Centripetal Method,
a = v12/r
Rotation
Velocity, v1 & time dilation, t1
dr
Length = r
Ni field method,
g = τc2 = (t1-t2)/dr.c2
Velocity, v2 & time dilation, t2
Pivot
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
32
Classical Centripetal Method = Ni Field Method
Classical Centripetal Force versus ni field method
Table (4)
Angular Path Tangential Particle
Classical Time Dilation or
Velocity Radius Velocity
Size
Centripetal
Ni Field
(m)
(m/s)
(m)
Method
Method
68
127
49
98
148
116
96
2
74
170
02/26/2009
9.85
4.07
5.01
6.13
4.75
0.42
0.79
1.17
1.86
4.64
669.8
516.89
245.49
600.74
703
48.72
75.84
2.34
137.64
788.8
1.00E-30
1.00E-27
1.00E-24
1.00E-21
1.00E-18
1.00E-15
1.00E-12
1.00E-09
1.00E-06
1.00E-03
45,546.40
65,645.03
12,029.01
58,872.52
104,044.00
5,651.52
7,280.64
4.68
10,185.36
134,096.00
45,546.40
65,645.03
12,029.01
58,872.52
104,044.00
5,651.52
7,280.64
4.68
10,185.36
134,096.00
Error
2.4033E-13
4.1720E-14
3.2700E-15
6.0000E-16
1.7090E-12
9.6100E-15
3.3797E-12
6.0083E-12
2.1640E-14
7.4337E-13
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
33
Laithwaite demonstrated that a rotating-spinning wheel
would lose weight.
The analysis shows that this is neither a gyroscopic effect
nor a conical pendulum effect.
Disc Spin, ωs ,
at 5,000 rpm
Spin radius, s,
≈ 0.3m
Hypotenuse = h
Theoretical Sensitivity Ranges:
1. 1.5m ≤ Lever Arm Length ≤ 2.5m
2. 0.26m ≤ Gyro Radius ≤ 0.34m
167 rpm ≤ ωprecession ≤ 580 rpm
3. 4,500 rpm ≤ Gyro Spin ≤ 5,500 rpm
Big Wheel ωprecession ≈ 7 rpm
25,000
Rotation radius, d,
between 1 to 2 m
Pivot
20,000
Rotating
Precession
Frequency
(Hz)
15,000
10,000
Hz ≤
n
ssio
rece
≤ 9.
z
68 H
ωp
1
10
19
28
37
46
55
64
73
82
91
100
109
118
127
136
145
154
163
172
181
190
199
208
217
226
235
244
2.78
1.6
0.0
1.2
5,000
0.8
02/26/2009
-
5500
RPM
S1
Disc Rotation,
ωd , at 7 rpm
0.4
500
0.0
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
s to
adiu
cR
Dis rm
pin
A
of S Lever
tio
g
a
R
tatin
Ro
Benjamin T Solomon
34
A 3-Dimensional Ni Field Model was built to simulate
this rotating-spinning disc.
TABLE (5). Numerical simulation model results for upward acceleration of Laithwaite rotating-spinning disc experiment.
0.30
Rotation Radius (m) = 1.00
Spin Radius (m) =
0
3
7
15
Rotation (rpm)
Spin (rpm)
1,000
0.000
0.833
1.944
4.166
3,000
0.000
2.499
5.833
12.499
5,000
0.000
4.166
9.722
20.833
0.20
Rotation Radius (m) = 0.50
Spin Radius (m) =
0
3
7
15
Rotation (rpm)
Spin (rpm)
1,000
0.000
0.589
1.373
2.943
3,000
0.000
1.766
4.120
8.828
5,000
0.000
2.943
6.866
14.714
0.10
Rotation Radius (m) = 0.75
Spin Radius (m) =
0
3
7
15
Rotation (rpm)
Spin (rpm)
1,000
0.000
0.715
1.668
3.575
3,000
0.000
2.145
5.005
10.725
5,000
0.000
3.575
8.342
17.875
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
35
The mechanical Ni Field, Laithwaite Equation,
for a rotating-spinning disc:
a = ωs ωd h
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
36
02/26/2009
Hayasaka and Takeuchi (1989) had reported that a
gyroscope would lose weight, but Lou et al. (2002)
could not reproduce this effect.
Given H&T’s downward pointing spin vector, the
Laithwaite Equation shows that Lou et al were correct,
because acceleration produced will be orthogonal to
both spin and rotation.
Therefore, to observe weight change the spin vector
has to be orthogonal to the gravitational field.
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
37
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
38
The Electric
Field is locked
with respect to
the radius of
motion.
Magnetic
Field lines
pointing into
the paper
Velocity,
v, of
charged
particle
B, (magnetic
field)
Ni field method,
g = τc2 = (t1-t2)/dr.c2
+dv, small
change in
velocity
E, (electric
field)
Path radius
Center of
rotation
Time dilation, t1 ,
at velocity, v1.
Expanded View
of Non-Inertial
Field of
Velocities
B, (magnetic
field)
dv, (velocity)
Time dilation, t2 ,
at velocity, v2.
E, (electric
field)
-dv, small
change in
velocity
Apparent
size and
shape of
charged
particle
dr
v-dv
02/26/2009
dv, (velocity)
Space, Propulsion and Energy Sciences International Forum,
Electric
Field of
charged
particle
v
v+dv
Velocity Gradient Across
Particle
=
SPESIF-2009, Huntsville,Charged
AL, Von
Braun
Center
Acceleration
Benjamin T Solomon
39
Solving for electron motion gives,
(v ± dv ) = ω ( r ± dr )
v = (q/m)B.r
dv = (q/m)B.dr
a = q (v x B)/m
Ni Field Method
dt= 1/ 1 (v dv1 ) 2 /c 2 1/ 1 (v dv2 )2 /c 2
a= c 2{ 1/ ( 1 v 2 /c 2 ) 1/ 1 [v (q/m)Bdr) 2 /c 2 ] }/dr
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
40
Classical Electromagnetic Method = Ni Field Method
Table (6) Electromagnetic theory versus the Ni Field Method
Angular Path Tangential Particle ElectroNi Field Model
Velocity Radius Velocity
Size
Magnetic
(m)
(m/s)
(m)
Theory
68
127
49
98
148
116
96
2
74
170
02/26/2009
9.85
4.07
5.01
6.13
4.75
0.42
0.79
1.17
1.86
4.64
669.8
516.89
245.49
600.74
703
48.72
75.84
2.34
137.64
788.8
1.00E-30
1.00E-27
1.00E-24
1.00E-21
1.00E-18
1.00E-15
1.00E-12
1.00E-09
1.00E-06
1.00E-03
Equation (17)
45,546.40
65,645.03
12,029.01
58,872.52
104,044.00
5,651.52
7,280.64
4.68
10,185.36
134,096.00
EMFP
Error
Equation (27)
45,546.4000003409
65,645.0300002925
12,029.0100000120
58,872.5200003546
104,044.0000008580
5,651.5200000002
7,280.6400000007
4.6800000000
10,185.3600000812
134,096.0004133690
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
(27)-(17)
-3.4E-07
-2.9E-07
-1.2E-08
-3.5E-07
-8.6E-07
-2.2E-10
-6.8E-10
-5.1E-14
-8.1E-08
-4.1E-04
Benjamin T Solomon
41
The Electric
Field is locked
with respect to
the Magnetic
Field.
Magnetic
Field lines
pointing into
the paper
Ni field method,
g = τc2 = (t1-t2)/dr.c2
Velocity,
v, of
charged
particle
Path radius
E, (electric
field)
dv, (velocity)
Center of
rotation
Time dilation, t1 ,
at velocity, v1.
Expanded View
of Non-Inertial
Field of
Velocities
B, (magnetic
field)
+dv, small
change in
velocity
B, (magnetic
field)
-dv, small
change in
velocity
E, (electric
field)
Time dilation, t2 ,
at velocity, v2.
v-dv
02/26/2009
Electric
Field of
charged
particle
Apparent
size and
shape of
charged
particle
dr
v
dv, (velocity)
v+dv
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
42
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
43
02/26/2009
This paper presents the general force field equation,
g=τ.c2, for many different phenomena, gravitational,
electromagnetic, and mechanical forces because they
exhibit a common property, the Non-Inertia Field.
Gravity modification technology works because
gravity and electromagnetic forces exhibit non-inertia
field properties.
Thus gravitational acceleration is not dependent on its
mass source, confirming the theoretical and
technological feasibility of gravity modification as a
real working technology.
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
44
02/26/2009
Since the immediate local field properties determine the
local accelerations, this simplifies technology development
to local field modifications, implying that some technology
based transformation Γ(s) can be applied to the external or
environmental field to produce non-inertia motion.
The electron process model indicates that the shaped electric
field exhibits force in the presence of an external moving
magnetic field.
From a propulsion technology perspective, the electric field
holds force, while the magnetic field is used to power the
non-inertia field.
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
45
02/26/2009
There are three keys here.
First, the technology transformation Γ(s) has to be non-linear
with respect to the space along the path of the required
acceleration.
Second, gravity modification consists of two parts, field
vectoring, and field modulation.
Third, interstellar travel could be achieved by breaking the
environmental transformation, Γ(e), into two transformations,
one for space Γ(sx,y,z) and other for time and mass Γ(st,m) so that
distances could be shrunk without altering time or mass.
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
46
02/26/2009
I would like to thank Paul Murad and Glen Robertson for
reviewing this paper, catching the typo errors, comments
and questions that led to a clearer, tighter paper.
Mike Darschewski for providing the solution to the local
analytical model.
The National Space Society and the Mars Society for
providing the conference platform for presenting my earlier
work on this subject this past seven years.
And the Space, Propulsion, Energy Sciences International
Forum for this opportunity today.
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
47
02/26/2009
Green, A.G., “General Relativity”, St. Andrews University, http://www.standrews.ac.uk/~ag71/PH1012/ Lecture_Notes/lecture_1.pdf, April 11, (2005).
Kane, Gordon L., Supersymmetry, Helix Books, Cambridge, (2000).
Hayasaka, Hideo and Takeuchi, Sakae, “Anomalous Weight Reduction on a Gyroscope’s Right
Rotations around the Vertical Axis on the Earth” Physical Review Letters 63 (25): (1989), pp. 2701-2704.
Laithwaite, E., “The Heretic”, BBC documentary available at
http://www.gyroscopes.org/heretic.asp, (1994).
Laithwaite, E., “Royal Institution’s 1974-1975 Christmas Lectures”, presented at The Royal Institution,
United Kingdom, 1974, available at http://www.gyroscopes.org/1974lecture.asp (1974).
Luo, J., Nie, Y. X. , Zhang, Y. Z. , and Zhou, Z. B., “Null result for violation of the equivalence
principle with free-fall rotating gyroscopes” Phys. Rev. D 65, (2002), p. 042005.
Schultz, B., Gravity from the ground up, Cambridge University Press, Cambridge, (2003).
Solomon, B.T., “An Epiphany on Gravity”, Journal of Theoretics, Vol 3-6, (2001).
Solomon, B.T., “Does the Laithwaite Gyroscopic Weight Loss have Propulsion Potential?” presented
at 8th International Mars Society Conference, The Mars Society, Boulder, Colorado, USA, August 11-14,
(2005).
Solomon, B.T., “Laithwaite Gyroscopic Weight Loss: A First Review”, presented at International Space
Development Conference, National Space Society, Los Angeles, California, May 4-7, (2006).
Solomon, B.T., An Introduction to Gravity Modification: A Guide to Using Laithwaite's and Podkletnov's
Experiments and the Physics of Forces for Empirical Results, Universal Publishers, Boca Raton, (2008).
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
48
Email: ben . t . solomon @ gmail . com
Website: http://www.iseti.us/
Mail: P.O. Box 831, Evergreen, CO 80437, USA
02/26/2009
Space, Propulsion and Energy Sciences International Forum, SPESIF-2009, Huntsville, AL, Von Braun Center
Benjamin T Solomon
49