Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
CCE in irradiated silicon detectors considering the avalanche effect Vladimir Eremin, by Elena Verbitskaya, Andrei Zabrodskii Ioffe institute St Petersburg, Russia Zheng Li BNL Jaakko Haerconen HIP RD50 meeting, CERN, 16 – 18 Nov, 2009 Outline • • • • • Model The effect simulation CCE(V) profile CCE(F) profile Summary V.Eremin, RD50 Nov.2009 Experimental evidence of the gain V.Eremin, RD50 Nov.2009 Electric field evolution with fluence in PAD detectors (single peak model) The electric field in PAD N on P silicon detector 1.8E+05 1.6E+05 Electric field, V/cm d = 300um V = 500V g = 1.7e-2 cm-1 F=1e14 F=3e14 F=1E15 F=3E15 F=1E16 1.4E+05 1.2E+05 1.0E+05 8.0E+04 6.0E+04 4.0E+04 2.0E+04 0.0E+00 0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02 2.5E-02 3.0E-02 Distance, cm V.Eremin, RD50 Nov.2009 Depth profile of multiplication probability Avalanch probability along the detector thickness Avalanch probability, cm-1 3.5E+03 3.0E+03 Electrons, V=1000 V 2.5E+03 2.0E+03 1.5E+03 Holes, V=1000 V Electrons, V=700 V The N on P detector operates at: RT The detector thickness - 300um Fluence 1e16 neq/cm2 Holes, V=700 V 1.0E+03 5.0E+02 0.0E+00 0.E+00 2.E-03 4.E-03 6.E-03 8.E-03 1.E-02 Distance, cm Electric field in detector at different bias voltage 2.5E+05 V=1000 V Electric field, V/cm 2.0E+05 V=700 V 1.5E+05 g$531,1) 1.0E+05 5.0E+04 0.0E+00 0.E+00 2.E-03 4.E-03 6.E-03 Distance, cm 8.E-03 1.E-02 V.Eremin, RD50 Nov.2009 Voltage dependence of the CCE The detector operates at RT. The detector thickness is 300um. Fluence 1e16neq/cm2 The trapping time: e= τp= 2.5e-10 s, Electron collection to the n+ side CCE(V) 5 4.5 CCE, arb.unt 4 3.5 3 2.5 2 1.5 1 0.5 0 0 200 400 600 800 1000 Voltage, V Calculations are based on trivial SP detector model. What is in a real strip detector ? V.Eremin, RD50 Nov.2009 Current stabilization and electric field smoothing around strip The approach is based on explanation of the high breakdown voltage for the heavily irradiated P on N silicon detectors via the electric field suppression by the local current injection. (V. Eremin et. al., “Scanning Transient Current Study of the I-V Stabilization Phenomenon in Silicon Detectors Irradiated by Fast Neutrons”, NIM A, 388 (1977), 350.) n+ strip E(x) Soft breakdown and hole injection accompanied by trapping X V.Eremin, RD50 Nov.2009 Extractions from the “Conclusions” of the talk “The Avalanche Effect in Operation of Heavily Irradiated Si p-i-n Detectors” V. Eremin (Friburg, 2009). 1. The charge multiplication in heavily irradiated detectors is based on two fundamental mechanisms: • the avalanche multiplication in P-N junctions • the electric field manipulation by current injection in the deep level dopped semiconductors. 2. The SPB model conceders a “strong feed-back loop” via the current injection that explains the detector stable operation at the high voltage and the smoothed rise of the collected charge up to 100% of CCE. V.Eremin, RD50 Nov.2009 PTI model and origin of Double Peak (DP) electric field distribution V. Eremin, E. Verbitskaya, Z. Li. “The Origin of Double Peak Electric Field Distribution in Heavily Irradiated Silicon Detectors”, NIM A 476 (2002) 556. -V Neff trapping Trapping of free carriers from detector reverse current to midgap energy levels of radiation induced defects leads to DP E(x) DLs responsible for DP E(x) are midgap DLs: DD: Ev + 0.48 eV DA: Ec – 0.52 eV V.Eremin, RD50 Nov.2009 Electric field manipulation in bulk of heavily irradiated detector by hole injection 30 n + Neutron irradiation 25 14 Fn = 1.4*10 cm -2 E, kV/cm 20 T = 140 K V = 210 Volt 15 2 j, nA/cm : 0.1 1 5 10 15 20 p + 10 5 0 0 50 100 150 200 250 x, m E.Verbitskaya et al., “Optimization of electric field distribution by free carriers injection ….” IEEE trans., NS-49 (2002), p. 258. V.Eremin, RD50 Nov.2009 PTI model of electric field stabilization effect via the “Soft Avalanche Break Down” Multiplication probability 12000 10000 8000 6000 4000 2000 0 0 0.005 0.01 0.015 0.02 0.025 0.03 Distance from p+ contact, cm P+ N+ V.Eremin, RD50 Nov.2009 Calculation of the Electric field with PTI model of “Soft Avalanche Break Down” DL # D/A, 0/1 Ci-Oi Deep donor V-V Deep acceptor 0 0 1 1 electrons holes electrons holes electrons holes electrons holes Et=Edl-Ev 0.36 0.76 0.48 0.64 0.7 0.42 0.595 0.525 sig/e[cm2] 1.00E-15 1.00E-15 1.00E-15 1.00E-15 sig/h[cm2] 1.00E-15 1.00E-15 1.00E-15 1.00E-15 Ndl[cm-3] 0.00E+00 2.00E+14 0.00E+00 5.00E+15 Sig*Vth 1.93E-08 1.47E-08 1.93E-08 1.47E-08 1.93E-08 1.47E-08 1.93E-08 1.47E-08 detrap.prob. 8.31E-04 1.42E+04 1.76E-01 6.73E+01 3.23E+03 3.66E-03 2.98E+01 3.97E-01 Fn = 1e16 cm-2, V = 1500, 1000, 700, 500V 350000 2.50E+06 300000 No SABD Electric field, V/cm Electric field, V/cm 2.00E+06 1.50E+06 1.00E+06 5.00E+05 0.00E+00 0.02 With SABD 250000 200000 150000 100000 50000 0 0.022 0.024 0.026 0.028 Distance from P+ contact, cm 0.03 0 0.005 0.01 0.015 0.02 0.025 0.03 Distance from P+ contact, cm V.Eremin, RD50 Nov.2009 Voltage dependence of the multiplication effect in detectors Fn = 1e16 cm-2 CCE(V) 4000 Collected charge, pairs 5 4.5 CCE, arb.unt 4 No SABD 3.5 3 2.5 2 1.5 1 3500 3000 2000 1500 1000 500 0.5 0 0 200 400 600 800 0 1000 500 Voltage, V 700 900 1100 1300 1500 1300 1500 Voltage, V 5000 Collected charge, pairs 1200 Collected charge, pairs X=0.029cm 2500 1000 X=0.0295 cm 800 600 400 200 4500 4000 3500 X=0.028 cm 3000 2500 2000 1500 1000 500 0 0 500 700 900 1100 Voltage, V 1300 1500 500 700 900 1100 Voltage, V V.Eremin, RD50 Nov.2009 Fluence dependence of the multiplication effect in detector V = 1000V X = 0.028cm P+ N+ CCD ~ Vdr*ttr = 10e7*2.5e-10=25um Q gen = 1000 e (10um of MIP track) CCE mip = 30/300*10=1 Collected charge, pairs 2000 X 1800 1600 1400 1200 1000 800 600 400 200 0 1E+13 1E+14 1E+15 1E+16 Fluence, n/cm-2 V.Eremin, RD50 Nov.2009 Future • The set of strip detectors with different width of strips will be finished in 2009. • Irradiation - spring 2010. • CCE calculation for MIPs with PTI SABD model V.Eremin, RD50 Nov.2009 Summary • Earlier predicted phenomenon of stabilization of the maximal electric field at n+ side of heavily irradiated detectors is proofed. • The soft CCE(V) characteristics of heavily irradiated detectors were successfully modeled. • The PTI DP model with effective 2 midgap levels for E(X) distribution in irradiated detectors has got new confirmation. V.Eremin, RD50 Nov.2009