Download Part 2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
University of Twente
Department Applied Physics
First-year course on
Electromagnetism
Part II: Magnetism: slides
© F.F.M. de Mul
1
FdM
Magnetic Force on Current Wire
dS
Suppose: total current = I ;
cross section S variable
eT
dl=dl.eT
B
| j | = dI/dS
j = n q v (n = part./m3)
Lorentz force on one charge: F = q v x B
….. per unit of volume : f = nq v x B = j x B
….. on volume dV : dF = j x B. dV
dF = j x B. dS.dl
j = j.eT
dF = j.dS. eT x B . dl
dF = I . dl x B
Straight conductor in homogeneous field:
B
FdM
F = I.eT x B  dl =
F = I. L. eT x B
2
Hall effect
l
I
G
P
Suppose n charge carriers / m3
I
a
d
H
B
v
Q
F
B-field causes deviation of path of charge carriers
Build up of electric field EHall between Q and P: Q+ ; P-
Stationary case: Fmagn = Felec  q v B = q EHall
IB
With j = nqv = I/(ad)  EHall  vB 
nqad
IB
Hall potential : VHall  VQ  VP  EHall . d 
nqa
FdM
3
Magnetic field of a line current
 0 I eT  er
Biot & Savart : dB 
dl
2
4 r
dl=dl.eT

er
dl=dz
Question: Determine B in P
z
O
r
e
R
P
I
(1) var  z : dB 
dB
0 I 1
4 R 2  z 2
Integration over z from - to +
Approach: Current line elements dl
Calculation: eT x er = e ;
tangential component only: dB
 0 I sin 
dB 
dz
2
4 r
R
dz
Result :
2
2
R z
0 I
1
Rd 
(2) var   : dB 
sin  2
2
2
4 R sin 
sin 
FdM
Integration over  from 0 to 
0 I
BP 
eφ
2R
4
Magnetic field of a circular circuit
 0 I eT  er
Biot & Savart : dB 
dl
2
4 r
I
l
er
dB
r
dl
P
dl = dl. eT
FdM
dBy
dB
r
R
Approach: Current line elements dl
R
a
a 
Question: Determine B in P

P
dBy
y
Calculation: eT x er = 1 ;
symmetry: y- component only:
I 1
dBy  0  2 dl cos 
4 l r
dBy 
0 I 1
a
2

a
4 a 2  R 2
a2  R2
0 I . a 2
BP  2 2 3 / 2 e y
2a  R 
5
Magnetic field of a circular solenoid
Radius: a ; Current I
Length: L
Coils: N , or per meter: n
y
P
Question: Determine B in P
Approach: Solenoid = set of circular circuits ;
and for each circuit:
0 I . a 2
BP  2
e
2 3/ 2 y
2a R


R is distance from
circuit to P
L
Each circuit: strip dy; current dI = n.dy.I
dy
L
O
R
y
yP
FdM
0
R=yp-y
a
P
B
 0 .nI .dy.R 2

2 R2  a

2 3/ 2
ey
Result for L   :
y
B = 0 n I ey
Result independent of6 a, L
Magnetic forces between currents
I1
Question: determine F12
I2
eT1
er1
r12 eT2
F12
B12
e 1
1
eT2  e 1  er1
FdM
dFL  I dl  B ; dl  dl.eT
Calculation
B1 2
 0 I1

e 1
2r12
F12   I 2 .eT2  B12 .dl2
2
If L1  L2
Relations:
0 I
B
eθ ; eθ  eT  er
2R
: F12  F21
F1 2
 0 I1 I 2

L2 (e r1 )
2 r12
7
Why is the wire moved by Lorentz force ?
(since inside the wire only the conduction electrons move)
Conductor:
- fixed ion lattice,
- conduction electrons
I
+ + + + + + +
+ + + + + + +
+ + + + + + +
I
electron
Magnetic field B
 plane of drawing
FL
B
v
B
-q
Hall effect: concentration of electrons
(- charge) at one side of conductor
Lattice ions feel a force FE upwards
FdM
This force (= FL ) is electrical !!
-------FE
+
8
Ampère’s Law (1)
Long thin straight wire; current I
I
l
Question: Determine the
“Circulation of B-field”
along circle l
B
r
e
 B  dl
0 I
0 I
l B  dl  l 2r e  e dl  2r 2r
 B  dl   I : Ampere
0
l
9
FdM
Ampère’s Law (2)
 B  dl   I : Ampere
I
0
l
l
B
r
dl
d
r
B
and again :
 B  dl   I
0
c
=r. d
FdM
 B  dl
0 I
c B  dl  c B.r.d  2r r.2
e
c
Question: Determine the
“Circulation of B-field”
along circuit c
Consequences:
1. More currents through c add up ;
2. Currents outside c do not contribute ;
3. Position of current inside c
10
is not important.
B-field from a thick wire
Cylinder: radius a
current : I   j  dS
S
I
 B  dl  0 I  0  j  dS
l
S
Options for current:
I: at surface II: in volume
(suppose: homogeneous)
Use Ampere-circuits (radius r):
0 I
2r
r  a B(r ).2r  0 I
B(r ) 
r  a ( I ) : B(r ).2r  0
B(r )  0
 0 I .r
B (r ) 
2a 2
r 2
( II ) : B(r ).2r  0 I 2
a
11
FdM
Magnetic Induction of a Solenoid
ez
I
er
G B
r
Br : Gauss-box G: total=0
B
c
c
top =bottom  wall=0  Br=0
B : Circuit c (radius r):
Ampere: B .2r=0  B =0
Bz
l 1
a
b
FdM
e
Radius: R ; Current: I
Length: L >> R
Coils: n per meter
Components: Bz Br B
2
Bz : Circuit 2: B(a)=B(b)=0
Circuit 1: Ampere: Bz l=0 n I l
Result: inside: B = 0 n I ez
outside: B = 0
12
Symmetries for Ampere’s Law
 B  dl  0 I  0  j  dS
l
Wire,
 long
Solenoid,
 long
S
Plane,
 extending
Toroid,
along core line
13
FdM
Magnetic Pressure
z
y
Plane layer L with current density j
L
x
BL
BL
Be
dFL
l
db
Suppose we add an external
field Be , with Be = BL , so that the
total field behind the layer = 0
Lorentz force on
: (FL=I.L.eT  B):
dFL= (j.db).dl  ½0 j ez
dFL= ½0 j2.db.dl ey
j
dl
B-field of the layer (circuit l ):
2 BL l = 0 j l  BL =  ½0 j ez
Be
j
Magnetic pressure: P = ½0 j2 = ½Be2 /0 .
Example: this situation is met at the wall of a (long) solenoid. Then
the pressure is outward, thus maximizing the cross section area.14
FdM
Vectorpotential A
Flow
tube
v’
dv’
r
er
P (x,y,z)
j
μ0
B
4

v'
B = rot A
x’,y’,z’
j  er
dv' 
2
r
μ0
4

v'
Question: determine A in P
from Biot-Savart for B
r = f (x,y,z, x’,y’,z’ )
μ0
1

 1
j     dv' 
    j.dv'

r
4 v '  r 

0   j    j 
u.dv  d (uv)  v.du  B       
dv'

4 v '   r  r 
  f ( x, y , z ) ; j  f ( x ' , y ' , z ' )    j  0
 0
 B   
 4
FdM
j 
dv'

r
v'

}
B
0
4
  j 
v'    r  dv'
0
j
 A
dv' in general,

4 v ' r
0 I
1
and A 
dl for a circuit
15

4 loop r
Magnetic Dipole (1): Far Field
r’
Far field: r’ << rP
1

r
1

rP
erP rP
r
O 
I
dl
1
2
rP
 r' 
r'
1     2 cos 
rP
 rP 
0 I
Thus : AP 
dl

4rP
FdM
0 I
A
4
dl
r
Goal: expression in rP in stead of all
r-values over circuit
1
1

2
r
rP  r '2 2rP r '.cos 
P
Monopole-term
=0
 r'

1  cos   .....
 rP

0 I

r '.cos  .dl
2 
4rP
Dipole-term
16
Magnetic Dipole (2): Dipole Moment
0 I
AP 
r '.cos  .dl
2 
4rP
z
en 
P
rP

erP
y
O
x
r’
Ax 

Assume: circular circuit,
with radius R << rP
Assume: Y-axis along OP’
 0   R sin  



r '.cos   er  r '   sin    R cos  
 cos 

0



P’
0 I
( R sin  cos  )( R.d )(  cos  ) 
2 
4rP
0 I 2
0 I 2
2
R
sin


cos

.
d


R sin  .
2
2

4rP
4rP
Ay  Az  0

FdM
 R sin  cos
Define: dipole moment:
m = I. Area. en = IR2.en
0
A
m  er
2
4rP
17
Magnetization and Polarization
Magnet = set of “elementary
circuits” ; n per m3
V=SL
Total surface current = Itot
Total magnetic moment = Itot S en
Def.: Magnetization M =
Polarization
L
en
S
magnetic moment / volume =
surface current / length
Magnetization
Dipole moment: p [Cm]
Dipole moment: m [Am2]
Polarization P = np [Cm-2]
= surface charge / m2
Magnetization M = nm [Am-1]
= surface current / m
18
FdM
Magnetic circuit: Torque and Energy
b
F
F
b.sin 
I
l
m

B
F

B
m
F
Torque: moment:  = F . b sin  = I B l b sin  = I B S sin 
Magnetic dipole moment: m = I S en
Torque: moment:  = m x B
Potential energy: min for  = 0 ; max for  =  
Potential energy: Epot = -MB. cos  = - m . B
19
FdM
Electret and Magnet
P
Electret
E = (D-P)/0
D = 0 E + P
 E  dl  0
 D  dS  Q
f
0
Magnet
E
D
H
B
+++
--M
H = B / 0 -M
B = 0 H + M
 H  dl  I  0
 B  dS  0
f
20
FdM
B- and H-fields at interface
1 1
B1
B2
Gauss box
Circuit:
2
Given: B1 ; 1 ; 2
Question: Calculate B2
Needed: “Interface-crossing relations”:
 H  dl  I free and  B  dA  0
2
Relation H and B: B = 0 r H
: B1.Acos 1 - B2.Acos 2 =0  B1 = B2
: no I : H1.Lsin 1 - H2.Lsin 2 =0
B1 1 A B2 1 A

H1 tan 1 L H 2 tan  2 L
 H1// = H2//
 r1 tan 1

 r 2 tan  2
21
FdM
Toroid with air gap
Core
line;
radius R;
L = 2R
I
Relations:
d
Result:
Suppose:
- toroid solenoid: R, L, N, r ;
- air gap, r =1 , width d <<R;
g = gap ; m = metal
Question: Determine Hg in gap
 H  dl  I
 B  dA  0
f
B  0 r H
Hg d + Hm (L-d) = N I
Bg =Bm
Bg=oHg ; Bm =0r Hm
Hg
 r NI
Hg 
and H m 
L  d (  r  1)
r
22
FdM
Induction: conductor moves in field
B
L1(t)
S1
L2 (t+dt )
S2
v
v.dt 
dl
   

top
bottom
wall

wall

Gauss box: top lid S1 in L1,
bottom lid S2 in L2
Area = v dt dl sin
 B  dS  0  
 (t )  (t  dt )  d(t )
 B  e [v.dt.dl.sin  ]   B  (v.dt  dl ) dt.  (v  B)  dl
n
wall
L
d(t )

   (v  B)  dl    E n  dl
dt
L
L
FdM
Suppose: circuit L moves with
velocity v through field B
Question: Show equivalence:
d
Vind   E  dl    B  dS
dt S
L
L
En = non-electrostatic field
23
Induction: Faraday’s Law
B
S
B
V0
c
Static:
I0
 E  dl 0
c
Vind
S
c
Iind
Dynamic: Suppose  changes 
Vind  0  Non-electrostatic field EN
d
d
Vind   E N  dl  
   B  dS
dt
dt S
c
Consequence: Let circuit c shrink, with keeping S.
c
For closed surface :
c
S
S
E
c
FdM
N
 dl  0   B  dS  0
S
24
Induction in rotating circuit frame

v
b
v
l
Bext


Bext
v
en
= t ; v= ½b
en
Induction potential difference :
(I) Using Lorentz force: Vind   E N  dl   (v  Bext )  dl 
=EN
2lvBext sin   2lvBext sin t
(II) Using flux change:
d
d
d
   Bext  dS   Bext [lb cos ] 
dt
dt
dt
Bext lb sin t  2 Bext lv sin t
Vind  
25
FdM
Electromagnetic brakes
Why is a conducting wire decelerated by a magnetic field?
Case I: switch open
B
v FL
P
Q
FE
B
vL
Q
I
Case II: switch closed
v FL
P
FL moves electrons: vL ,
which causes I and FL2 ,
which causes electric field,
FL2
Fions
FdM
Electrons feel FL
Potential difference VPQ :
P - , Q + (= Hall effect)
FL counteracted by FE
which will act on positive
metal ions: Fions.
26
Coupled circuits (1): M and L
1
2
I1
I2
Suppose: circuit 1 with current I1
Part of flux from 1 will pass
through 2 : 21
21 ~ I1
Definition: 21 = M21.I1
M : coefficient of mutual induction : “Mutual Inductance” :
[ H ] = [ NA-1m-1.m2.A-1] = [ NmA-2 ]
Suppose: Circuit 2 has current as well: I2
Flux through 2: 2= 21 + 22 = M21 I1 + M22 I2
M22 = L2 L : coefficient of self-induction “(Self) Inductance”:
M and L are geometrical functions (shape, orientation, distance etc.)
27
FdM
Coupled circuits (2): toroid
N1 , I1
r
N2
Question: determine M21
Cross
section S
Core line: L
Flux from 1 through S : S = BS = 0 r N1 I1 S / L
Linked flux from 1 through 2: 21 = N2 S = 0 r N1 N2 I1 S / L
Coefficient of mutual induction:
M21 = 0 r N1 N2 S / L
This expression is symmetrical in 1 and 2:
This result is generally valid: Mij = Mj i
FdM
M21 = M12
28
Coax cable : Self inductance
I
Radii: a and b (a<b)
Length: l
Current: I ; choice: inside = upward
B
Gauss
surface
0 r I
Ampere:
B(r ) 
B-field tangential
2r
Flux through circuit:
0  r I
0  r I . l b
 B   B  dS   dl 
dr 
ln
2r
2
a
S
0
a
l
b
Self-inductance (coefficient of self-induction): per unit of length:

b
L  0 r ln
(Compare with capacity of C  2  ln b  1
0 r
2
a

 a
coax cable, per meter:
29
FdM
Magnetic Field Energy
Circuit c in XY-plane
z
H-field lines:
circles around circuit.
I
H
y
A
A-surfaces: everywhere
 H (or B) -field lines
 through A:    B  dA
A
x
Magnetic energy:
Em= ½ L I2 =
 12  B  dA H  dl  12   ( B  H )(dA  dl )  12  B  H dv
A
c
dl
dA
A c
Compare: electric energy: Ee =
V
1
2
 D  E dv
v
30
FdM
Maxwell’s Fix of Ampere’s Law
Induction :
 En  dl  
c
d
B  dS

dt S
Changing B-field
causes E-field
Question: Does a changing E-field cause a B-field ?
D
L
Suppose: chargeing a capacitor using j
 B  dl    j  dS
L encloses S1 :
j
0
L
 B  dl    j  dS
L encloses S2 :
S1
0
L
S2
S3
S2
Volume enclosed  j  dS   dQ f   d D  dS
S
dt
dt 
by S2 and S3:
S
2
L encloses S3 :
3
 B  dl  0
L
FdM
S1
d
D  dS

dt S3
d
In general :  B  dl    j  dS    D  dS
dt S
L
S
31