Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 9 Determining IP Routes © 1999, Cisco Systems, Inc. 9-1 Objectives Upon completion of this chapter, you will be able to complete the following tasks: • Distinguish the use and operation of static and dynamic routes • Configure and verify a static route • Identify how distance vector IP routing protocols such as RIP and IGRP operate on Cisco routers • Enable Routing Information Protocol (RIP) • Enable Interior Gateway Routing Protocol (IGRP) • Verify IP routing with show and debug commands © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-2 What is Routing? 10.120.2.0 172.16.1.0 To route a router need to know: • Destination addresses • Sources it can learn from • Possible routes • Best route • Maintain and verify routing information © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-3 What is Routing? (cont.) 10.120.2.0 E0 172.16.1.0 S0 Network Protocol Connected Learned Destination Network 10.120.2.0 172.16.1.0 Exit Interface E0 S0 Routed Protocol: IP • Routers must learn destinations that are not directly connected © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-4 Identifying Static and Dynamic Routes Dynamic Route Static Route Uses a route that a network administrator enters into the router manually © 1999, Cisco Systems, Inc. Uses a route that a network routing protocol adjusts automatically for topology or traffic changes www.cisco.com ICND—9-5 Static Routes Stub Network 172.16.1.0 SO Network A 172.16.2.2 172.16.2.1 B B Configure unidirectional static routes to and from a stub network to allow communications to occur. © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-6 Static Route Configuration Router(config)#ip route network [mask] {address | interface}[distance] [permanent] Defines a path to an IP destination network or subnet © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-7 Static Route Example Stub Network 172.16.1.0 SO Network A 172.16.2.2 172.16.2.1 B B ip route 172.16.1.0 255.255.255.0 172.16.2.1 This is a unidirectional route. You must have a route configured in the opposite direction. © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-8 Default Routes Stub Network 172.16.1.0 SO Network A 172.16.2.2 172.16.2.1 BB ip route 0.0.0.0 0.0.0.0 172.16.2.2 This route allows the stub network to reach all known networks beyond router A. © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-9 What is a Routing Protocol? 10.120.2.0 Routing protocols are used between routers to determine paths and maintain routing tables. Once the path is determined a router can route a routed protocol. E0 Network Protocol Connected RIP IGRP 172.16.1.0 S0 Destination Network 10.120.2.0 172.16.2.0 172.17.3.0 Exit Interface 172.17.3.0 E0 S0 S1 Routed Protocol: IP Routing protocol: RIP, IGRP © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-10 Autonomous Systems: Interior or Exterior Routing Protocols IGPs: RIP, IGRP EGPs: BGP Autonomous System 100 Autonomous System 200 • An autonomous system is a collection of networks under a common administrative domain • IGPs operate within an autonomous system • EGPs connect different autonomous systems © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-11 Administrative Distance: Ranking Routes I need to send a packet to Network E. Both router B and C will get it there. Which route is best? IGRP Administrative Distance=100 Router A Router B RIP Administrative Distance=120 E Router D Router C © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-12 Classes of Routing Protocols B Distance Vector A C D Hybrid Routing B A C Link State D © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-13 Distance Vector Routing Protocols B A C Distance—How far Vector—In which direction D D C B A Routing Table Routing Table Routing Table Routing Table Pass periodic copies of routing table to neighbor routers and accumulate distance vectors © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-14 Distance Vector—Sources of Information and Discovering Routes 10.1.0.0 E0 10.2.0.0 A S0 Routing Table 10.3.0.0 B S0 S1 Routing Table 10.4.0.0 S0 C E0 Routing Table 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 0 10.2.0.0 S0 0 10.3.0.0 S1 0 10.4.0.0 E0 0 Routers discover the best path to destinations from each neighbor © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-15 Distance Vector—Sources of Information and Discovering Routes 10.1.0.0 E0 10.2.0.0 A S0 Routing Table 10.3.0.0 B S0 S1 Routing Table 10.4.0.0 S0 C E0 Routing Table 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 0 10.2.0.0 S0 0 10.3.0.0 S1 0 10.4.0.0 E0 0 10.3.0.0 S0 1 10.4.0.0 S1 1 10.2.0.0 S0 1 10.1.0.0 S0 1 Routers discover the best path to destinations from each neighbor © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-16 Distance Vector—Sources of Information and Discovering Routes 10.1.0.0 E0 10.2.0.0 A S0 Routing Table 10.3.0.0 B S0 S1 Routing Table 10.4.0.0 S0 C E0 Routing Table 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 0 10.2.0.0 S0 0 10.3.0.0 S1 0 10.4.0.0 E0 0 10.3.0.0 S0 1 10.4.0.0 S1 1 10.2.0.0 S0 1 10.4.0.0 S0 2 10.1.0.0 S0 1 10.1.0.0 S0 2 Routers discover the best path to destinations from each neighbor © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-17 Distance Vector—Selecting Best Route with Metrics A IGRP Bandwidth 56 Delay RIP Hop count Load T1 56 Reliability MTU IPX Ticks, hop count T1 B Information used to select the best path for routing © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-18 Distance Vector—Maintaining Routing Information Process to update this routing table A Topology change causes routing table update Updates proceed step-by-step from router to router © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-20 Distance Vector—Maintaining Routing Information Process to update this routing table Router A sends out this updated routing table after the next period expires A Topology change causes routing table update Updates proceed step-by-step from router to router © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-21 Distance Vector—Maintaining Routing Information Process to update this routing table B Process to update this routing table Router A sends out this updated routing table after the next period expires A Topology change causes routing table update Updates proceed step-by-step from router to router © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-22 Maintaining Routing Information Problem—Routing Loops 10.1.0.0 E0 10.2.0.0 A S0 Routing Table 10.3.0.0 S0 B S1 Routing Table 10.4.0.0 S0 C E0 Routing Table 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 0 10.2.0.0 S0 0 10.3.0.0 S1 0 10.4.0.0 E0 0 10.3.0.0 S0 1 10.4.0.0 S1 1 10.2.0.0 S0 1 10.4.0.0 S0 2 10.1.0.0 S0 1 10.1.0.0 S0 2 Each node maintains the distance from itself to each possible destination network © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-23 Maintaining Routing Information Problem—Routing Loops 10.1.0.0 10.2.0.0 E0 A S0 Routing Table 10.3.0.0 B S0 S1 Routing Table 10.4.0.0 S0 C E0 X Routing Table 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 10.2.0.0 S0 0 10.3.0.0 S1 0 10.4.0.0 E0 Down 10.3.0.0 S0 1 10.4.0.0 S1 1 10.2.0.0 S0 1 10.4.0.0 S0 2 10.1.0.0 S0 1 10.1.0.0 S0 2 0 Slow convergence produces inconsistent routing © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-24 Maintaining Routing Information Problem—Routing Loops 10.1.0.0 E0 10.2.0.0 A S0 Routing Table 10.3.0.0 B S0 S1 Routing Table 10.4.0.0 S0 C E0 X Routing Table 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 0 10.2.0.0 S0 0 10.3.0.0 S1 0 10.4.0.0 S0 2 10.3.0.0 S0 1 10.4.0.0 S1 1 10.2.0.0 S0 1 10.4.0.0 S0 2 10.1.0.0 S1 1 10.1.0.0 S0 2 Router C concludes that the best path to network 10.4.0.0 is through Router B © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-25 Maintaining Routing Information Problem—Routing Loops 10.1.0.0 E0 10.2.0.0 A S0 Routing Table 10.3.0.0 S0 B S1 Routing Table 10.4.0.0 S0 C E0 X Routing Table 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 0 10.2.0.0 S0 0 10.3.0.0 S1 0 10.4.0.0 S0 2 10.3.0.0 S0 1 10.4.0.0 S1 3 10.2.0.0 S0 1 10.4.0.0 S0 4 10.1.0.0 S0 1 10.1.0.0 S0 2 Router A updates its table to reflect the new but erroneous hop count © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-26 Symptom: Counting to Infinity 10.1.0.0 E0 10.2.0.0 A S0 Routing Table 10.3.0.0 B S0 S1 Routing Table 10.4.0.0 S0 C E0 X Routing Table 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 0 10.2.0.0 S0 0 10.3.0.0 S1 0 10.4.0.0 S0 4 10.3.0.0 S0 1 10.4.0.0 S1 5 10.2.0.0 S0 1 10.4.0.0 S0 6 10.1.0.0 S0 1 10.1.0.0 S0 2 • Packets for network 10.4.0.0 bounce between routers A, B, and C • Hop count for network 10.4.0.0 counts to infinity © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-27 Solution: Defining a Maximum 10.1.0.0 10.2.0.0 A E0 S0 Routing Table 10.3.0.0 B S0 S1 Routing Table 10.4.0.0 S0 C E0 X Routing Table 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 0 10.2.0.0 S0 0 10.3.0.0 S1 0 10.4.0.0 S0 16 10.3.0.0 S0 1 10.4.0.0 S1 16 10.2.0.0 S0 1 10.4.0.0 S0 16 10.1.0.0 S0 1 10.1.0.0 S0 2 Define a limit on the number of hops to prevent infinite loops © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-28 Solution: Split Horizon 10.1.0.0 E0 10.2.0.0 A S0 Routing Table X 10.3.0.0 B S0 S1 Routing Table X 10.4.0.0 S0 C E0 X Routing Table 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 0 10.2.0.0 S0 0 10.3.0.0 S1 0 10.4.0.0 S0 0 10.3.0.0 S0 1 10.4.0.0 S1 1 10.2.0.0 S0 1 10.4.0.0 S0 2 10.1.0.0 E1 2 10.1.0.0 S0 2 It is never useful to send information about a route back in the direction from which the original packet came © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-29 Solution: Route Poisoning 10.1.0.0 E0 10.2.0.0 A S0 Routing Table 10.3.0.0 S0 B S1 Routing Table 10.4.0.0 S0 C E0 X Routing Table 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 10.2.0.0 S0 0 10.3.0.0 S1 0 10.4.0.0 10.3.0.0 S0 1 10.4.0.0 S1 1 10.2.0.0 S0 Infinity 1 S0 10.4.0.0 S0 2 10.1.0.0 E1 2 10.1.0.0 S0 0 2 Routers set the distance of routes that have gone down to infinity © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-30 Solution: Poison Reverse 10.1.0.0 E0 10.2.0.0 A S0 10.3.0.0 S0 B S1 10.4.0.0 S0 C E0 X Poison Reverse Routing Table Routing Table Routing Table 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 10.2.0.0 S0 0 10.3.0.0 S1 0 10.4.0.0 10.3.0.0 S0 1 10.4.0.0 S1 Possibly Down 10.2.0.0 S0 Infinity 1 S0 10.4.0.0 S0 2 10.1.0.0 E1 2 10.1.0.0 S0 0 2 Poison Reverse overrides split horizon © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-31 Solution: Hold-Down Timers Network 10.4.0.0 is unreachable Update after hold-down Time 10.1.0.0 10.2.0.0 E0 A S0 S0 10.3.0.0 B Update after hold-down Time S1 10.4.0.0 S0 C E0 X Network 10.4.0.0 is down then back up then back down Router keeps an entry for the network possibly down state, allowing time for other routers to recompute for this topology change © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-32 Solution: Triggered Updates Network 10.4.0.0 is unreachable Network 10.4.0.0 is unreachable 10.1.0.0 E0 Network 10.4.0.0 is unreachable 10.2.0.0 A S0 S0 10.3.0.0 B S1 10.4.0.0 S0 C E0 X Router sends updates when a change in its routing table occurs © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-33 Implementing Solutions in Multiple Routes D 10.4.0.0 E B X C A © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-35 Implementing Solutions in Multiple Routes (cont.) Holddown D 10.4.0.0 E B X C Holddown A Holddown © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-36 Implementing Solutions in Multiple Routes (cont.) Holddown Poison Reverse D Poison Reverse 10.4.0.0 E B X C Holddown Poison Reverse Poison Reverse A Holddown © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-37 Implementing Solutions in Multiple Routes (cont.) Holddown D 10.4.0.0 E B X C Holddown Packet for Network 10.4.0.0 Packet for Network 10.4.0.0 A Holddown © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-38 Implementing Solutions in Multiple Routes (cont.) D 10.4.0.0 E B Link up! C A © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-39 Implementing Solutions in Multiple Routes (cont.) D 10.4.0.0 E B Link up! C A © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-40 Link-State Routing Protocols B C A D Link-State Packets Topological Database Routing Table SPF Algorithm Shortest Path First Tree After initial flood, pass small event-triggered link-state updates to all other routers © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-41 Hybrid Routing Choose a routing path based on distance vectors Balanced Hybrid Routing Converge rapidly using change-based updates Share attributes of both distance-vector and link-state routing © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-42 IP Routing Configuration Tasks Network 172.16.0.0 Router configuration • Select routing protocols RIP IGRP, RIP • Specify networks or interfaces IGRP Network 160.89.0.0 RIP Network 172.30.0.0 © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-43 Dynamic Routing Configuration Router(config)#router protocol [keyword] • Defines an IP routing protocol Router(config-router)#network network-number • Mandatory configuration command for each IP routing process • Identifies the physically connected network that routing updates are forwarded to © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-44 RIP Overview 19.2 kbps T1 T1 T1 • Hop count metric selects the path • Routes update every 30 seconds © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-45 RIP Configuration Router(config)#router rip • Starts the RIP routing process Router(config-router)#network network-number • Selects participating attached networks • The network number must be a major classful network number © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-46 RIP Configuration Example E0 172.16.1.0 S2 S2 A 172.16.1.1 10.1.1.1 10.1.1.2 S3 B S3 E0 C 10.2.2.2 10.2.2.3 192.168.1.1 2.3.0.0 router rip network 172.16.0.0 network 10.0.0.0 192.168.1.0 2.3.0.0 router rip network 192.168.1.0 network 10.0.0.0 router rip network 10.0.0.0 © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-47 Verifying the Routing Protocol—RIP E0 172.16.1.0 S2 A 172.16.1.1 10.1.1.1 S2 10.1.1.2 S3 B S3 E0 C 10.2.2.2 10.2.2.3 192.168.1.1 192.168.1.0 RouterA#sh ip protocols Routing Protocol is "rip" Sending updates every 30 seconds, next due in 0 seconds Invalid after 180 seconds, hold down 180, flushed after 240 Outgoing update filter list for all interfaces is Incoming update filter list for all interfaces is Redistributing: rip Default version control: send version 1, receive any version Interface Send Recv Key-chain Ethernet0 1 1 2 Serial2 1 1 2 Routing for Networks: 10.0.0.0 172.16.0.0 Routing Information Sources: Gateway Distance Last Update 10.1.1.2 120 00:00:10 Distance: (default is 120) © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-48 Displaying the IP Routing Table E0 172.16.1.0 S2 A 172.16.1.1 10.1.1.1 S2 10.1.1.2 S3 B S3 E0 C 10.2.2.2 10.2.2.3 192.168.1.1 192.168.1.0 RouterA#sh ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default U - per-user static route, o - ODR T - traffic engineered route Gateway of last resort is not set C R C R © 1999, Cisco Systems, Inc. 172.16.0.0/24 is subnetted, 1 subnets 172.16.1.0 is directly connected, Ethernet0 10.0.0.0/24 is subnetted, 2 subnets 10.2.2.0 [120/1] via 10.1.1.2, 00:00:07, Serial2 10.1.1.0 is directly connected, Serial2 192.168.1.0/24 [120/2] via 10.1.1.2, 00:00:07, Serial2 www.cisco.com ICND—9-49 debug ip rip Command E0 172.16.1.0 S2 A 172.16.1.1 10.1.1.1 S2 10.1.1.2 S3 B S3 E0 C 10.2.2.2 10.2.2.3 192.168.1.1 192.168.1.0 RouterA#debug ip rip RIP protocol debugging is on RouterA# 00:06:24: RIP: received v1 update from 10.1.1.2 on Serial2 00:06:24: 10.2.2.0 in 1 hops 00:06:24: 192.168.1.0 in 2 hops 00:06:33: RIP: sending v1 update to 255.255.255.255 via Ethernet0 (172.16.1.1) 00:06:34: network 10.0.0.0, metric 1 00:06:34: network 192.168.1.0, metric 3 00:06:34: RIP: sending v1 update to 255.255.255.255 via Serial2 (10.1.1.1) 00:06:34: network 172.16.0.0, metric 1 © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-50 Introduction to IGRP IGRP • More scalable than RIP • Sophisticated metric • Multiple-path support © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-51 IGRP Composite Metric 19.2 kbps 19.2 kbps Source Destination • Bandwidth • Delay • Reliability • Loading • MTU © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-52 IGRP Unequal Multiple Paths New Route Source Initial Route Destination • Maximum six paths • Next-hop router closer to destination • Within metric variance © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-54 Configuring IGRP Router(config)#router igrp autonomous-system • Defines IGRP as the IP routing protocol Router(config-router)#network network-number • Selects participating attached networks © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-55 Configuring IGRP (cont.) Router(config-router)#variance multiplier • Control IGRP load balancing Router(config-router)#traffic-share { balanced | min } • Control how load-balanced traffic is distributed © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-56 IGRP Configuration Example Autonomous System = 100 E0 172.16.1.0 S2 S2 A 172.16.1.1 10.1.1.1 10.1.1.2 S3 B S3 E0 C 10.2.2.2 10.2.2.3 192.168.1.1 router igrp 100 network 172.16.0.0 network 10.0.0.0 192.168.1.0 router igrp 100 network 192.168.1.0 network 10.0.0.0 router igrp 100 network 10.0.0.0 © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-57 Verifying the Routing Protocol—IGRP E0 172.16.1.0 S2 A 172.16.1.1 10.1.1.1 S2 10.1.1.2 S3 B S3 E0 C 10.2.2.2 10.2.2.3 192.168.1.1 192.168.1.0 RouterA#sh ip protocols Routing Protocol is "igrp 100" Sending updates every 90 seconds, next due in 21 seconds Invalid after 270 seconds, hold down 280, flushed after 630 Outgoing update filter list for all interfaces is Incoming update filter list for all interfaces is Default networks flagged in outgoing updates Default networks accepted from incoming updates IGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0 IGRP maximum hopcount 100 IGRP maximum metric variance 1 Redistributing: igrp 100 Routing for Networks: 10.0.0.0 172.16.0.0 Routing Information Sources: Gateway Distance Last Update 10.1.1.2 100 00:01:01 Distance: (default is 100) © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-58 Displaying the IP Routing Table E0 172.16.1.0 S2 A 172.16.1.1 10.1.1.1 S2 10.1.1.2 S3 B S3 E0 C 10.2.2.2 10.2.2.3 192.168.1.1 192.168.1.0 RouterA#sh ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default U - per-user static route, o - ODR T - traffic engineered route Gateway of last resort is not set C I C I 172.16.0.0/24 is subnetted, 1 subnets 172.16.1.0 is directly connected, Ethernet0 10.0.0.0/24 is subnetted, 2 subnets 10.2.2.0 [100/90956] via 10.1.1.2, 00:00:23, Serial2 10.1.1.0 is directly connected, Serial2 192.168.1.0/24 [100/91056] via 10.1.1.2, 00:00:23, Serial2 © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-59 debug ip igrp transaction Command E0 172.16.1.0 S2 A 172.16.1.1 10.1.1.1 S2 10.1.1.2 S3 B S3 E0 C 10.2.2.2 10.2.2.3 192.168.1.1 192.168.1.0 RouterA#debug ip igrp transactions IGRP protocol debugging is on RouterA# 00:21:06: IGRP: sending update to 255.255.255.255 via Ethernet0 (172.16.1.1) 00:21:06: network 10.0.0.0, metric=88956 00:21:06: network 192.168.1.0, metric=91056 00:21:07: IGRP: sending update to 255.255.255.255 via Serial2 (10.1.1.1) 00:21:07: network 172.16.0.0, metric=1100 00:21:16: IGRP: received update from 10.1.1.2 on Serial2 00:21:16: subnet 10.2.2.0, metric 90956 (neighbor 88956) 00:21:16: network 192.168.1.0, metric 91056 (neighbor 89056) © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-60 debug ip igrp events Command E0 172.16.1.0 S2 A 172.16.1.1 10.1.1.1 S2 10.1.1.2 S3 B S3 E0 C 10.2.2.2 10.2.2.3 192.168.1.1 192.168.1.0 RouterA#debug ip igrp events IGRP event debugging is on RouterA# 00:23:44: IGRP: sending update to 255.255.255.255 via Ethernet0 (172.16.1.1) 00:23:44: IGRP: Update contains 0 interior, 2 system, and 0 exterior routes. 00:23:44: IGRP: Total routes in update: 2 00:23:44: IGRP: sending update to 255.255.255.255 via Serial2 (10.1.1.1) 00:23:45: IGRP: Update contains 0 interior, 1 system, and 0 exterior routes. 00:23:45: IGRP: Total routes in update: 1 00:23:48: IGRP: received update from 10.1.1.2 on Serial2 00:23:48: IGRP: Update contains 1 interior, 1 system, and 0 exterior routes. 00:23:48: IGRP: Total routes in update: 2 © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-61 Updating Routing Information Example E0 172.16.1.0 X S2 A 172.16.1.1 10.1.1.1 S2 10.1.1.2 S3 B S3 E0 C 10.2.2.2 10.2.2.3 192.168.1.1 192.168.1.0 RouterA# debug ip igrp trans 00:31:15: %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet0, changed state to down 00:31:15: IGRP: edition is now 3 00:31:15: IGRP: sending update to 255.255.255.255 via Serial2 (10.1.1.1) 00:31:15: network 172.16.0.0, metric=4294967295 00:31:16: IGRP: Update contains 0 interior, 1 system, and 0 exterior routes. 00:31:16: IGRP: Total routes in update: 1 00:31:16: IGRP: broadcasting request on Serial2 00:31:16: IGRP: received update from 10.1.1.2 on Serial2 00:31:16: subnet 10.2.2.0, metric 90956 (neighbor 88956) 00:31:16: network 172.16.0.0, metric 4294967295 (inaccessible) 00:31:16: network 192.168.1.0, metric 91056 (neighbor 89056) 00:31:16: IGRP: Update contains 1 interior, 2 system, and 0 exterior routes. 00:31:16: IGRP: Total routes in update: 3 © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-62 Updating Routing Information Example (cont.) E0 172.16.1.0 S2 A 172.16.1.1 10.1.1.1 S2 10.1.1.2 S3 B S3 E0 C 10.2.2.2 10.2.2.3 192.168.1.1 192.168.1.0 RouterB#debug ip igrp trans IGRP protocol debugging is on RouterB# 1d19h: IGRP: sending update to 255.255.255.255 via Serial2 (10.1.1.2) 1d19h: subnet 10.2.2.0, metric=88956 1d19h: network 192.168.1.0, metric=89056 1d19h: IGRP: sending update to 255.255.255.255 via Serial3 (10.2.2.2) 1d19h: subnet 10.1.1.0, metric=88956 1d19h: network 172.16.0.0, metric=89056 1d19h: IGRP: received update from 10.1.1.1 on Serial2 1d19h: network 172.16.0.0, metric 4294967295 (inaccessible) 1d19h: IGRP: edition is now 10 1d19h: IGRP: sending update to 255.255.255.255 via Serial2 (10.1.1.2) 1d19h: subnet 10.2.2.0, metric=88956 1d19h: network 172.16.0.0, metric=4294967295 1d19h: network 192.168.1.0, metric=89056 1d19h: IGRP: sending update to 255.255.255.255 via Serial3 (10.2.2.2) 1d19h: subnet 10.1.1.0, metric=88956 1d19h: network 172.16.0.0, metric=4294967295 © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-63 Updating Routing Information Example (cont.) E0 X 172.16.1.0 S2 A 172.16.1.1 10.1.1.1 S2 10.1.1.2 S3 B S3 E0 C 10.2.2.2 10.2.2.3 192.168.1.1 192.168.1.0 RouterB#sh ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default U - per-user static route, o - ODR T - traffic engineered route Gateway of last resort is not set I 172.16.0.0/16 is possibly down, routing via 10.1.1.1, Serial2 10.0.0.0/24 is subnetted, 2 subnets C 10.1.1.0 is directly connected, Serial2 C 10.2.2.0 is directly connected, Serial3 I 192.168.1.0/24 [100/89056] via 10.2.2.3, 00:00:14, Serial3 RouterB#ping 172.16.1.1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.16.1.1, timeout is 2 seconds: ..... Success rate is 0 percent (0/5) RouterB# © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-64 Updating Routing Information Example (cont.) E0 172.16.1.0 S2 A 172.16.1.1 10.1.1.1 S2 10.1.1.2 S3 B S3 E0 C 10.2.2.2 10.2.2.3 192.168.1.1 192.168.1.0 RouterB#debug ip igrp transactions RouterB# 1d20h: IGRP: received update from 10.1.1.1 on Serial2 1d20h: network 172.16.0.0, metric 89056 (neighbor 1100) RouterB# RouterB#sh ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default U - per-user static route, o - ODR T - traffic engineered route Gateway of last resort is not set I 172.16.0.0/16 is possibly down, routing via 10.1.1.1, Serial2 10.0.0.0/24 is subnetted, 2 subnets C 10.1.1.0 is directly connected, Serial2 C 10.2.2.0 is directly connected, Serial3 I 192.168.1.0/24 [100/89056] via 10.2.2.3, 00:00:18, Serial3 RouterB#ping 172.16.1.1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.16.1.1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 32/38/48 ms © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-65 ip classless Command Default route E0 S0 10.1.0.0 Router(config)#ip classless Default • With no ip classless © 1999, Cisco Systems, Inc. 10.2.0.0 Network Protocol C C RIP To get to 10.7.1.1: • With ip classless 172.16.0.0 Destination Network Exit Interface 10.1.0.0 10.2.0.0 172.16.0.0 via 0.0.0.0 E0 S0 S0 E0 Drop www.cisco.com ICND—9-66 Visual Objective wg_pc_a 10.2.2.12 RIP e0/1 e0/2 e0 wg_ro_a 10.2.2.3 s0 10.140.1.2/24 wg_sw_a 10.2.2.11 wg_pc_l 10.13.13.12 ro’s e0 10.2.2.3 10.3.3.3 10.4.4.3 10.5.5.3 10.6.6.3 10.7.7.3 10.8.8.3 10.9.9.3 10.10.10.3 10.11.11.3 10.12.12.3 10.13.13.3 sw 10.2.2.11 10.3.3.11 10.4.4.11 10.5.5.11 10.6.6.11 10.7.7.11 10.8.8.11 10.9.9.11 10.3.3.11 10.11.11.11 10.12.12.11 10.13.13.11 RIP e0/1 e0/2 e0 wg_ro_l LL 10.13.13.3 s0 10.140.12.2/24 wg_sw_l 10.13.13.11 ... fa0/24 core_ server 10.1.1.1 © 1999, Cisco Systems, Inc. ro’s s0 10.140.1.2 10.140.2.2 10.140.3.2 10.140.4.2 10.140.5.2 10.140.6.2 10.140.7.2 10.140.8.2 10.140.9.2 10.140.10.2 10.140.11.2 10.140.12.2 pod A B C D E F G H I J K L fa0/23 s1/0 - s2/3 10.140.1.1/24 … 10.140.12.1/24 fa0/0 core_ro 10.1.1.3 core_sw_a 10.1.1.2 www.cisco.com ICND—9-67 Visual Objective wg_pc_a 10.2.2.12 IGRP e0/1 e0/2 e0 wg_ro_a 10.2.2.3 s0 10.140.1.2/24 wg_sw_a 10.2.2.11 wg_pc_l 10.13.13.12 IGRP e0/1 e0/2 ro’s s0 10.140.1.2 10.140.2.2 10.140.3.2 10.140.4.2 10.140.5.2 10.140.6.2 10.140.7.2 10.140.8.2 10.140.9.2 10.140.10.2 10.140.11.2 10.140.12.2 ro’s e0 10.2.2.3 10.3.3.3 10.4.4.3 10.5.5.3 10.6.6.3 10.7.7.3 10.8.8.3 10.9.9.3 10.10.10.3 10.11.11.3 10.12.12.3 10.13.13.3 sw 10.2.2.11 10.3.3.11 10.4.4.11 10.5.5.11 10.6.6.11 10.7.7.11 10.8.8.11 10.9.9.11 10.3.3.11 10.11.11.11 10.12.12.11 10.13.13.11 wg_ro_l e0 LL 10.13.13.3 wg_sw_l 10.13.13.11 pod A B C D E F G H I J K L s0 10.140.12.2/24 s1/0 - s2/3 ... fa0/24 core_ server 10.1.1.1 © 1999, Cisco Systems, Inc. fa0/23 core_sw_a 10.1.1.2 10.140.1.1/24 … 10.140.12.1/24 fa0/0 core_ro 10.1.1.3 www.cisco.com ICND—9-68 Summary After completing this chapter, you should be able to perform the following tasks: • Determine when to use a static or dynamic route. • Configure a static route on a Cisco Router. • Describe how distance vector routing protocols operate. • Configure the RIP and IGRP routing protocols on a Cisco router. • Use show ip route, show ip protocols, and other show and debug commands to verify proper routing operation. © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-69 Review Questions 1. What is an advantage of using a static route rather than a dynamic route? What is a disadvantage? 2. What is the advantage of using IGRP rather then RIP? What is a possible disadvantage? 3. To scale up to very large IP networks, what routing protocols are recommended? © 1999, Cisco Systems, Inc. www.cisco.com ICND—9-70