Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
17th International Teletraffic Congress Topological design of telecommunication networks Michał Pióroa,b, Alpar Jüttnerc, Janos Harmatosc, Áron Szentesic, Piotr Gajowniczekb, Andrzej Mysłekb a b c Lund University, Sweden Warsaw University of Technology, Poland Ericsson Traffic Laboratory, Budapest, Hungary Outline • Background • Network model and problem formulation • Solution methods – – – – Exact (Branch and Bound) and the lower bound problem Minoux heuristic and its extensions Other methods (SAN and SAL) Comparison of results • Conclusions © M.Pioro, A.Jüttner, J.Harmatos, Á.Szentesi, P.Gajowniczek, A.Mysłek Topological Design of Telecommunication Networks 1/15 Background of Topological Design problem: localize links (nodes) with simultaneous routing of given demands, minimizing the cost of links selected literature: Boyce et al1973 - branch-and-bound (B&B) algorithms Dionne/Florian1979 – B&B with lower bounds for link localization with direct demands Minoux1989 - problems’ classification and a descent method with flow reallocation to indirect paths for link localization © M.Pioro, A.Jüttner, J.Harmatos, Á.Szentesi, P.Gajowniczek, A.Mysłek Topological Design of Telecommunication Networks 2/15 Transit Nodes’ and Links’ Localization – problem formulation Given – a set of access nodes with geographical locations – traffic demand between each access node pair – potential locations of transit nodes find – – – – the number and locations of the transit nodes links connecting access nodes to transit nodes links connecting transit nodes to each other routing (flows) minimizing the total network cost © M.Pioro, A.Jüttner, J.Harmatos, Á.Szentesi, P.Gajowniczek, A.Mysłek Topological Design of Telecommunication Networks 3/15 Symbols used constants hd volume of demand d aedj =1 if link e belongs to path j of demand d, 0 otherwise ce cost of one capacity unit installed on link e ke fixed cost of installing link e B budget constraint Me upper bound for the capacity of link e variables xdj flow realizing demand d allocated to path j (continuous) ye capacity of link e (continuous) se =1 if link e is provided, 0 otherwise (binary) © M.Pioro, A.Jüttner, J.Harmatos, Á.Szentesi, P.Gajowniczek, A.Mysłek Topological Design of Telecommunication Networks 4/15 Network model adequate for IP/MPLS LER L1 LSR L3 L2 LSP • LER access node • LSR transit node • LSP demand flow LSR LSR L4 LSR © M.Pioro, A.Jüttner, J.Harmatos, Á.Szentesi, P.Gajowniczek, A.Mysłek Topological Design of Telecommunication Networks LER L4 5/15 Optimal Network Design Problem and Budget Constrained Problem ONDP minimize C = Se ce ye + Se kese constraints Sj xdj = hd SdSj aedj xdj = ye ye Mese BCP minimize C = Se ce ye constraints Se kese B Sj xdj = hd SdSj aedj xdj = ye ye Mese © M.Pioro, A.Jüttner, J.Harmatos, Á.Szentesi, P.Gajowniczek, A.Mysłek Topological Design of Telecommunication Networks 6/15 Solution methods • Specialized heuristics • Simulated Allocation (SAL) • Simulated Annealing (SAN) • Exact algorithms: branch and bound (cutting planes) © M.Pioro, A.Jüttner, J.Harmatos, Á.Szentesi, P.Gajowniczek, A.Mysłek Topological Design of Telecommunication Networks 7/15 Branch and Bound method • advantages – exact solution – heuristics’ results verification • disadvantages – exponential increase of computational complexity – solving many “unnecessary” sub-problems 1 0 1 © M.Pioro, A.Jüttner, J.Harmatos, Á.Szentesi, P.Gajowniczek, A.Mysłek Topological Design of Telecommunication Networks 8/15 Branch and Bound - lower bound • LB proposed by Dionne/Florian1979 is not suitable for our network model – with non-direct demands it gives no gain • We propose another LB – modified problem with fixed cost transformed into variable cost: minimize C = Se xeye + Seke where xe = ce + ke /Me © M.Pioro, A.Jüttner, J.Harmatos, Á.Szentesi, P.Gajowniczek, A.Mysłek Topological Design of Telecommunication Networks 9/15 Minoux heuristics The original Minoux algorithm: step 0 1 2 3 4 (greedy) allocate demands in the random order to the shortest paths: if a link was already used for allocation of another demand use only variable cost, otherwise use variable and installation cost of the link calculate the cost gain of reallocating the demands from each link to other allocated links (the shortest alternative path is chosen) select the link, whose elimination results in the greatest gain reallocate flows going through elimination the link being eliminated if improvement possible go to step 2 © M.Pioro, A.Jüttner, J.Harmatos, Á.Szentesi, P.Gajowniczek, A.Mysłek Topological Design of Telecommunication Networks 10/15 Minoux heuristics’ extensions • individual flow shifting (H1) • individual flow shifting with cost smoothing (H2) Ce(y) =cey + ke ·{1 - (1-)/[(y-1) +1]} =0 if y > 0 otherwise. • bulk flow shifting (H3) – for the first positive gain (H3F) – for the best gain (H3B) • bulk flow shifting with cost smoothing (H4) – two versions (H4F and H4B) © M.Pioro, A.Jüttner, J.Harmatos, Á.Szentesi, P.Gajowniczek, A.Mysłek Topological Design of Telecommunication Networks 11/15 Other methods • Simulated Allocation (SAL) in each step chooses, with probability q(x), between: – allocate(x) – adding one demand flow to the current state x – disconnect(x) – removing one or more demand flows from current x • Simulated Annealing (SAN) starts from an initial solution and selects neighboring state: – changing the node or link status – switching on/off a node – switching on/off a transit or access link © M.Pioro, A.Jüttner, J.Harmatos, Á.Szentesi, P.Gajowniczek, A.Mysłek Topological Design of Telecommunication Networks 12/15 Comparison - objective Relative cost difference for ONDP with respect to the optimal solution [%] network n H1 H2 H3F H3B H4F H4B SAN N7 0 0 0 0 0 0 0 0 N7 1 0 0 0 0 0 0 0 N7 2 0 0.90 0 0 0 0 0 N7 3 4.90 7.78 4.90 4.90 3.39 3.39 0 N7 5 114.23 110.84 20.29 20.29 13.02 0 11.66 N7 6 125.61 125.82 19.64 19.64 5.99 0 12.71 N14 0 0 0 0 0 0 0 0 N14 1 0.02 0.05 0.02 0.02 0.03 0.03 0 N14 2 0.91 1.15 0.63 0.63 0.26 0.35 0 N14 3 10.27 5.65 8.11 8.11 3.03 2.95 1.31 N14 5 128.35 17.92 43.86 37.73 10.70 10.70 25.4 SAL 0 0 0 1.55 0 0 0 0 0.44 2.26 4.39 Relative cost difference for TNLLP with respect to the optimal solution [%] network n k H1 H2 H3F H3B H4F H4B SAN SAL N14 4 4 24.13 11.59 24.13 24.13 3.43 2.28 41.24 0 N14 4 5 23.72 11.39 23.72 23.72 3.37 2.24 39.63 0 N14 4 6 22.73 11.97 22.73 22.73 4.97 3.98 25.21 3.55 © M.Pioro, A.Jüttner, J.Harmatos, Á.Szentesi, P.Gajowniczek, A.Mysłek Topological Design of Telecommunication Networks 13/15 Comparison - running time TNLLP ONDP 10000 10000 H1 1000 running time [s] running time [s] 1000 100 10 1 0,1 0,01 H2 H3F 100 H3B 10 H4F H4B 1 SAN SAL 0,1 0 N7 2 N7 5 N7 0 N14 2 N14 5 N14 0 N28 2 N28 5 N28 (4,4) (4,5) (4,6) (5,4) (5,5) (5,6) (4,4) (4,5) (4,6) (5,4) (5,5) (5,6) N14 N14 N14 N14 N14 N14 N28 N28 N28 N28 N28 N28 © M.Pioro, A.Jüttner, J.Harmatos, Á.Szentesi, P.Gajowniczek, A.Mysłek Topological Design of Telecommunication Networks 14/15 Conclusions • proposed modification of Minoux algorithm can efficiently solve TNLLP, especially H4B • Simulated Allocation seems to be the best heuristics • proposed lower bound can be used to construct branch-and-bound implementations • need for diverse methods - hybrids of the best shown here, e.g. Greedy Randomized Adaptive Search Procedure using SAL seems to be a good solution © M.Pioro, A.Jüttner, J.Harmatos, Á.Szentesi, P.Gajowniczek, A.Mysłek Topological Design of Telecommunication Networks 15/15