Download UMTS TOUT IP

Document related concepts
no text concepts found
Transcript
UMTS TOUT IP
GROUPE 1
FAISAL
SHERAZ
WASIQ
THIAM
All rights reserved for DESS-IRS
1
Presentations
 Architecture du UTRAN avec IP
Moussa Equipement Terminal
Sheraz RNC
Services (IP)
WASIQ OSA / VHE (VoIP) QOS
Faisal Multicast
All rights reserved for DESS-IRS
2
UMTS TOUT IP
All rights reserved for DESS-IRS
3
MODELE EN COUCHES
All rights reserved for DESS-IRS
4
• Couches de protocole dans UMTS
RNS
UTRAN
Application
E.g.,
IP,PPP
PDCP
GTP-U
RLC
UDP/I
P
MAC
MAC
AAL5
WCDMA
WCDM
A
Node-B
ATM
PDCP
RLC
Uu
Iu
E.g.,
IP,PPP
GTPU
GTPU
UDP/
IP
UDP/
IP
UDP/IP
AAL5
L2
L1
ATM
L1
GTP-U
L2
Gn
RNC
UE
All rights reserved for DESS-IRS
5
UMTS TOUT IP
All rights reserved for DESS-IRS
6
CONCEPT WCDMA MULTIPLEXAGE
• FDD EN FREQUENCE
• BANDES APPAIREES
• 2 PORTEUSES (liaisons montante et
descendante)pour utilisation courante
• TDD EN TEMPS
• 1 PORTEUSE(utilisation haut debit)
All rights reserved for DESS-IRS
7
LES CANAUX DE L’INTERFACE
RADIO
All rights reserved for DESS-IRS
8
All rights reserved for DESS-IRS
9
UMTS TOUT IP
All rights reserved for DESS-IRS
10
UMTS TOUT IP
All rights reserved for DESS-IRS
11
NŒUD B(station de base dans
UMTS)
• GESTION DE LA COUCHE PHYSIQUE DE
L’INTERFACE AIR
• CODAGE DU CANAL
• ENTRELACEMENT
• ADAPTATION DU DEBIT
All rights reserved for DESS-IRS
12
UMTS TOUT IP
All rights reserved for DESS-IRS
13
UTRAN
(UMTS Terrestrial Radio Acces
Network)
Two major elements;
a)
b)
RNC (Radio Network Controller)
Node B
RNC (Radio Network Controller),
which own and controls the radio resources in its domain i.e. the Node
Bs connected. RNC is the service access point for all services
UTRAN provides to CN.
MSC,SGSN and HLR can be extended to UMTS requirements.
RNC and Node B are completely new designs.
All rights reserved for DESS-IRS
14
All rights reserved for DESS-IRS
15
PSTN/ISDN
IP
HLR
GMSC
GGSN
SGSN
MSC
UTRAN
RNC
BTS
UTRAN transport: ATM
New tricks: Soft Handover
UTRAN: Terrestrial Radio Access
Network RNC: Radio Network Contr
All rights reserved for DESS-IRS
16
All rights reserved for DESS-IRS
17
Goal
 Maximization in handling of packet switched and circuit
switched data.
 IP based protocols such RTP (data transport) and SIP
(Signaling control) protocols
 ATM is currently main transport mechanism in the
UTRAN.
All rights reserved for DESS-IRS
18
All rights reserved for DESS-IRS
19
Primary functions RNC
! Uplink and downlink signal transfer
!
!
!
!
!
!
Mobility
Add and delete cells during soft hand-off
Macro-diversity during handover
Uplink Outer Loop Power Control functionality
Downlink Power Control
Controls common physical channels, which are used by multiple
users
! Interfaces with SGSN and MSC/VLR
All rights reserved for DESS-IRS
20
Types of RNC
1. CRNC (Controlling RNC)
Responsible for the load and congestion control of its
own cells
2. SRNC (Serving RNC)
Terminates both Iu link for the transport of user data and
the corresponding RANAP signaling to/from the core
network.
1. DRNC (Drift RNC)
Controls cells used by the mobile. When is required the
DRNC performs macro-diversity combining and splitting.
All rights reserved for DESS-IRS
21
Protocol for UTRAN Interfaces
All rights reserved for DESS-IRS
22
Layered Architecture
Horizontal layers have two
main layers:
! Radio Network layer
! Transport Network
Layer
Vertical planes have four
main planes:
! Control Plane
! User Plane
! Transport Network
Control Plane
! Transport Network
User Plane
All rights reserved for DESS-IRS
23
All rights reserved for DESS-IRS
24
IP implementation
All rights reserved for DESS-IRS
25
Diversified positions in UMTS
Most important issues that are emphasize
• SSCF layer
• SSCOP layer
specifically designed for transport in ATM networks and which take care
of solutions such as signaling connection management.
Already IP based consists;
 M3UA (SS7 MTP3 _user adaptation Layer)
 SCTP (Simple Control Transmission Protocol)
 IP (Internet Protocol),
 AAL5(ATM Adaptation Layer 5).
All rights reserved for DESS-IRS
26
IP implementations in Iur
• Application layer, RNSAP, connects to its signaling bearer
•
•
•
via an SCCP-SAP
(Service Access Point).
Signaling bearer is ATM based.
The SCCP layer provides both connectionless and
connection-oriented service.
Below SCCP, the operator is able to select from one of
two switches
a) MTP3-B/SCCFNNI/SSCOP
b) SCTP/IP.
All rights reserved for DESS-IRS
27
Glossary
UMTS
RNC
CN
SGSN
GPRS
USIM
Uu
Iub
Iur
GSMC
PLMN
GGSN
SSCF
SSCOP
Protocol
Universal Mobile Transmission System
Radio Network Controller
Core Network
Serving GPRS Node
Global Packet Radio Service
UMTS Subscriber Identity Module
UMTS air interface
Interface between Node B and RNC
Interface between two RNC
Gateway MSC
Public Land Mobile Network
Gateway GPRS Support Node
Service Specific Coordination Function
Service Specific Connection Oriented
All rights reserved for DESS-IRS
28
Toward an All-IP Based UMTS
System Architecture
All rights reserved for DESS-IRS
29
Transitions
• Shift from R99 to R00 standard
– Replacment of Circuit Switced transport technology by
Packet technology
– Introduction of multimedia support in the UMTS Core
Network
• Evolution of Open Service Architecture (OSA)
– Apart from the official bodies ( 3GPP, 3GPP2) other
partnerships and foras started polling in to the
success of an all-IP based UMTS architecture.
All rights reserved for DESS-IRS
30
The 2 Trends
• The trend in the design of UMTS service
architecture to standardize Open Network
Interface
• The trend in the design of the UMTS
network architecture to move towards an
IP based approach
All rights reserved for DESS-IRS
31
OSA
• Obliged network operators to provide
third party service providers access to
their UMTS service architecture via open
standardized interfaces
• Development of OSA interfaces through
the Parlay/OSA API
– API presented by the “Joint API Group”
consisting of Parlay and 3GPP
All rights reserved for DESS-IRS
32
OSA/Parley API
• Parlay APIs try to open telecommunication networks to
third party service providers.
All rights reserved for DESS-IRS
33
• A change in business model has
introduced new players in the telecomm
business
Some prefer to do it
Some want to address
users directly
via the Network Operator
connectivity
+ services
connectivity
User
User
Operator
services
Operator
connectivity
connectivity
New Player
New Player
But they have something in common:
They compete in the services market...
and they have no network!
THE TECHNICAL ENABLER
= PARLAY/OSA
All rights reserved for DESS-IRS
34
Presence of Parley/OSA
Parlay / OSA
Services/application
layer
OSA/Parlay API’s
exposing
network service
capabilities
Control layer
Service Capability Servers
Connectivity layer
Core & Radio Networks
2G 2.5G & 3G
All rights reserved for DESS-IRS
Distribution
via
middleware
35
App1
App2
AppN
Applications (independent of
underlying network technology)
Parlay/OSA API
3GPP
ETSI
Parlay
JAIN
OSA Gateway
Mapping to network specific protocols
Network
Network complexity hidden from
applications
All rights reserved for DESS-IRS
36
Open Service Architecture
All rights reserved for DESS-IRS
37
All rights reserved for DESS-IRS
38
Role of SCS in service
provisioning
• UMTS Call Control Servers
• HLR
• MExE
• SAT
• CAMEL
All rights reserved for DESS-IRS
39
From OSA to VHE
• Intervention of European Commission
– Opening of application interfaces towards the
networks
– Liberalization of telecommunication services market
– Enhancing portability of telecommunication services
between network and terminals
– Service portability = Virtual Home Environment (VHE)
All rights reserved for DESS-IRS
40
Virtual Home Environment
(VHE)
• Concept
– Provide user an environment to access the
services of his home network/service provider
even while roaming in the domain of another
network provider.
All rights reserved for DESS-IRS
41
Introduction to VoIP in Mobile
Moving towards an all IP Network
All rights reserved for DESS-IRS
42
VoIP – pros and cons
• Advantages
• Disadvantage
– Lower equipment cost
– Easier management of network
– Usage of Techniques like silence
suppression
• Hence lower communication
cost to user
– Use of end to end IP, opens path
to multimedia over IP services like
video conferencing
– Using same technology (IP
services) in fixed and mobile
networks facilitates
internetworking
– QoS
• Delays by handover
• Scarce radio resources
• Admission control
All rights reserved for DESS-IRS
43
Enabling Packets
• MSC division
•
•
•
•
– MSC for Call Control
– MG for switching (IP Router)
• MG at the UTRAN side
• MG at the PSTN side
MGCF for MG
Signaling Gateway
CSCF (Call State Control Function)
HSS
All rights reserved for DESS-IRS
44
Interworking Two Worlds
Signaling Gateway
• SS7 over IP
• Connects control and service
elements
• Bridges service elements of
IN and SIP
IN/AIN
Network
Media Gateway Controller
• Call state
• Control of Media Gateways
• Authorization, verification &
settlement
Media
Gateway
Controller
Signaling
Gateway
Circuit Switch
Optical DWDM
ATM
SONET/SDH
Optical Layer
SIP
Server
IP/ATM Router
Media
Gateway
Video
Server
Application
Server
Media Gateway
• Media adaptation
• Addressing
• Usage and QoS information
All rights reserved for DESS-IRS
45
• For transport of Data Traffic
– UMTS uses GPRS
• For transport of Voice Calls
– Packet Switched mobile terminals
• Calls transmitted using GTP
• GTP works over IP
• All Mobility dealt with by GPRS
– Circuit Switched mobile terminals
• Voice samples travel between MGs using IP
using Iu Frame Protocol (FP).
• No GTP
• MG Handover
All rights reserved for DESS-IRS
46
2 Scenarios for Providing VoIP
Services
1. SoftSSP Concept : INAP / CAP support of
VOIP
•
•
–
–
Previously implementation of service logic from network
switch
NOW – IN allows controlling the service from a centralized
point (SCP) outside the switch
IN relies on SSPs in the switches to trigger the SCP via
the IN Application Part (INAP) protocol when IN service
control is needed.
Power of IN/CAMEL in complexity of SSP and INAP/CAP
All rights reserved for DESS-IRS
47
SoftSSP (Continued…)
• the SSP contains a mapping
• determines which point in the MSC call
state model needs to trigger which point
in the state model of the IN/CAMEL
service logic
• The more complex the mapping, the more
complex the service
All rights reserved for DESS-IRS
48
SoftSSP (Continued…)
• IN/CAMEL on a SIP server
– Develop SSP on top of SIP Server
– a mapping between the SIP call state model and the
state model of the IN/CAMEL service logic
– This kind of SSP is called as SoftSSP
• Investment on CAMEL can be reused for
providing VoIP on a CSCF.
– Billing and database handling process can be reused
from the R99 SSP circuit-switched call control
All rights reserved for DESS-IRS
49
Direct Third Party Call Control
OSA Support for VoIP(Via
CGI/CPL or SIP)
• Third Party Call control mechanisms
– SIP ( already well known)
– CGL
– CPL
• Used to instruct network entites to create and
•
•
terminate calls to other network entities
CGL and CPL allow independence from the SIP
server logic.
Concept similar to IN but there is no SCP control
All rights reserved for DESS-IRS
50
Continued…
• CGI
– For trusted users
– triggered when the first request arrives
• CPL
–
–
–
–
–
Untrusted users
Allows users to load CPL scripts on networks
Reads and verifies scripts
Controlled party executes instruction
Messages sent back to CPL Controller
All rights reserved for DESS-IRS
51
Quality of Service
End to End
All rights reserved for DESS-IRS
52
QoS to the Content & Services Operator
• The ability of the network to predictably
deliver content & services to subscribers,
consistent with their expectation, and
therefore resulting in a overall satisfactory
user experience is related to…
– Perceived Voice or Video Quality
• Quantified by Jitter (aka delay variation)
• Quantified by Throughput
– Perceived response time
• Quantified by RTT and Uni-directional End to End delay
(aka Latency)
• Quantified by Throughput
– Perceived Availability/Reliability
• Quantified by Network Utilization
All rightsLevel
reserved
for DESS-IRS
• And 24/7 Service
Monitoring
53
End to End QoS Testing
• Traditional performance testing focused on per flow measurements
at the lowest layer (data link layer)
– ATM ( Cell rate, Cell Delay, etc…)
– Frame Relay (Frame Rate, Frame Delay, etc…)
• Traditional testing is still necessary but no longer enough
• QoS testing must now be End to End
– Higher Layer (Network and Transport)
– IP (Packet Rate, Packet Delay)
– TCP (Segments)
• This approaches a quantitative measure that is much closer to the
subscribers true experience
All rights reserved for DESS-IRS
54
Active (Intrusive) QoS Testing
Involves generation and monitoring of test traffic to
simulate real world scenarios
Abis
Gb
BSC
BTS
Internet
Gn
SGSN
GSM RAN
Gi
GGSN
CN PS-Domain
•Applicability



Lab Evaluations
Provisioning of
New Services
Troubleshooting
• Measured
Metrics
HEADER
Timestamp
Sequence Number
CRC
Test Frame or CELL



All rights reserved for DESS-IRS

Packet Loss
Delay &
Jitter
Throughput
55
Sequencing
Passive (Non-Intrusive) QoS
Testing
Internet
Involves passive monitoring of customer traffic
Abis
BTS
Gb
BSC
GSM RAN
Gn
SGSN
Gi
GGSN
CN PS-Domain
•Applicability




Content Delivery
Service Assurance
Network Optimization
Billing Mediation
• Measured
Metrics



All rights reserved for DESS-IRS
Packet Loss
RTT & Delay
Throughput
56
Should the
Antenna be
Adjusted ?
Should
the cell be
split?
Maintaining QoS
Radio
Systems
Are Data & Voice
channels properly
allocated?
Public Voice
Network
MSC
VLR
Why can’t I
get Access?
Is there a
Capacity
Problem?
HLR
xRAN
Internet
SGSN
Why are my
calls
disconnecting?
Why is my
email frozen
Are there
Database
Problems
?
GGSN
Are the GPRS
Support
Nodes
Dropping
Packets?
All rights reserved for DESS-IRS
Is the ISP
causing the
Delay
57
QoS Example: Effects of mobility
Throughput decreases during cell changes
All rights reserved for DESS-IRS
58
UMTS QoS Architecture
All rights reserved for DESS-IRS
59
4 Classes of QoS in UMTS
•Conversational
class
•Streaming
class
•Interactive
class
•Background
class
Real Time
Real Time
Best Effort
Best Effort
•Fundamental
characteristics
•- Preserve time
relation (variation)
between information
entities of the stream
•- Conversational
pattern (stringent
and low delay )
• Preserve time
relation (variation)
between
information
entities of the
stream
•- Request response
pattern
•
-Preserve payload
content
•-Destination is not
expecting the data
within a certain time
•-Preserve payload
content
•Example of
the application
• voice
•streaming
video
• web
browsing
• telemetry,
emails
•Traffic
class
All rights reserved for DESS-IRS
60
Le Multicast dans UMTS tout IP
All rights reserved for DESS-IRS
61
Plan
1.
2.
3.
4.
5.
Le
Le
Le
Le
Le
multicast
multicast
multicast
multicast
multicast
dans
dans
dans
dans
dans
les réseaux IP
les réseaux UMTS
le GGSN
le RNC
le Node-B
All rights reserved for DESS-IRS
62
Multicast : Pourquoi faire ?
1. Vidéo conférence, Diffusion Vidéo.
2. Avantages du Multicast :
Economie de bande passante, bande passante limité dans le UMTS
Economie des ressources dans les serveurs
All rights reserved for DESS-IRS
63
Unicast dans les réseau IP
All rights reserved for DESS-IRS
64
All rights reserved for DESS-IRS
65
Multicast dans les réseau IP
All rights reserved for DESS-IRS
66
All rights reserved for DESS-IRS
67
Multicast dans UMTS
Quel Architecture Choisir ?
Architecture du Multicast dans le GGSN
Architecture du Multicast dans le RNC
Architecture du Multicast dans le Node B
All rights reserved for DESS-IRS
68
Règle pour recevoir ou envoyer une trame multicast :
• Chaque terminal client multicast doit avoir un lien établit
•
•
avec le GPRS
Chaque terminal client multicast doit créer un lien (PDP)
avec le GGSN pour le protocole IGMP
Le terminal UMTS est maintenant dans l’environnement
IGMP et peut joindre ou quitter le groupe multicast en
utilisant la signalisation IGMP.
All rights reserved for DESS-IRS
69
Architecture du Multicast dans le GGSN
Source
Multicast
1 Circuit PDP/Terminal pour le UMTS
1 Circuit PDP/Terminal pour le protocole ICMP
Internet
Unicast
Unicast
Unicast
Terminal
Unicast
Multicast
RNC
Terminal
Node-B
GGSN
SGSN
Terminal
Unicast
RNC
Terminal
Node-B
HLR/AuC/EIR/CGF
All rights reserved for DESS-IRS
70
Les inconvénients de cette architecture
1.
2.
3.
4.
5.

Lorsqu’un membre décide de quitter le multicast groupe, la
source multicast UMTS ne reçoit pas cette information.
Lorsque tous les membres ont quitté le multicast groupe, la
source multicast continue à transmettre les données à GGSN.
L’architecture multicast a aussi besoin de ressource pour ses
propres protocoles ( PIM-SM) et le GGSN doit pouvoir gérer le
protocole IGMP.
Surcharge important sur le GGSN qui peut entraîner de la
congestion
Le GGSN doit créer un circuit PDP pour la signalisation du
protocole IGMP et un circuit PDP pour le transport des données.
Le multicast des données vue dans cette architecture demande
deux fois plus de ressources PDP que l’unicast
All rights reserved for DESS-IRS
71
Architecture au
avec
Multicast
Multicast
dans
dans
le le
RNC
RNC
Source
Multicast
1 Circuit PDP/Terminal pour le UMTS
Internet
1 Circuit PDP/Terminal pour le protocole ICMP
Unicast
Unicast
Terminal
Multicast
Multicast
Multicast
RNC
Terminal
Node-B
GGSN
Unicast
Unicast
SGSN
Terminal
RNC
Terminal
Multicast
Node-B
HLR/AuC/EIR/CGF
All rights reserved for DESS-IRS
72
Avantages et Inconvénients
Avantages :
1.
La charges du GGSN est réduite par rapport à la solution précédente.
2.
Cette architecture permet au terminal de spécifier ses exigence de QoS au RNC
3.
Permet de contrôler les admissions et les congestions pour chaque flux de
données.
Inconvénients :
1.
L’information de résiliation d’un client multicast ne remonte toujours pas à la
source qui continue d’émettre les données multicast. Deplus, lorsqu’un terminal
s’engage pour être un client multicast, cette information n’est pas remonté au
GGSN, il y aura donc des problèmes de facturation des services multicast. Il faut
développer un protocole de signalisation entre le RNC et SGSN pour résoudre ce
problème.
2.
Lorsque la source multicast provient d’un autre domaine que celui du SGSN ou
GGSN, le packet sera rejeté par le multicast routeur du RNC. Pour résoudre ce
problème, il faudrait que le GGSN puisse agir comme la source du multicast ce qui
signifie que le roaming ne peut fonctionner pour le multicast.
3.
Il n’existe pas de mécanisme permettant de créer un canal de donné entre le RNC
et le terminal UMTS, il en
dereserved
même dans
le cœur du réseau UMTS.
Allest
rights
for DESS-IRS
73
Architecture au
avec
Multicast
Multicast
dans
dans
le le
RNC
Node-B
Source
Multicast
1 Circuit PDP/Terminal pour le UMTS
Internet
1 Circuit PDP/Terminal pour le protocole ICMP
Unicast
Multicast
Multicast
Terminal
Multicast
Multicast
RNC
Terminal
Node-B
GGSN
Unicast
SGSN
Multicast
Terminal
RNC
Terminal
Multicast
Node-B
HLR/AuC/EIR/CGF
All rights reserved for DESS-IRS
74
Avantages et Inconvénients
Avantages :
•
La mobilité sera bien visible de l’arbre multicast dont la racine se trouve dans le
Node-B
Sachant que le handover dans UMTS se fera au niveau soft, et que lors du handover
les
deux node-B seront en liaison avec le terminal alors le handover multicast se fera
avant
le handover réel.
Inconvénients :
•
Il n’existe pas de mécanisme de broadcast de donnée entre le Node-B et le terminal
UMTS.
•
Il n’existe pas de mécanisme d’implémentation de l’arbre de distribution dans le Core
de UMTS.
•
L’information de résiliation d’un client multicast ne remonte toujours pas à la source
qui continue d’émettre les données multicast. Deplus, lorsqu’un terminal s’engage
pour etre un client multicast, cette information n’est pas remonté au GGSN, il y aura
All rights reserved
for DESS-IRS
donc des problèmes de facturation
des services
multicast. Il faut développer un 75
Point à améliorer :
•
Pour chacun de ces architectures, il faut qu’un protocole spécifique
puisse gérer la distribution des clefs et de l’encryptage des
données par la source multicast afin que seul les membres du
service multicast puisse recevoir ce service et pas les autres.
•
On peut décentraliser la fonction de facturation du GGSN au SGSN,
mais pour cela il faut concevoir un canal de signalisation entre
SGSN et la fonction routeur multicast où qu’elle se trouve dans le
réseau.
•
Il faut que UMTS soit capable de reconnaître diffèrent type de
service multicast pour qu’une facturation par service puisse être
établie.
All rights reserved for DESS-IRS
76
Conclusions
•
La première solution d’architecture Multicast Routing dans GGSN :
- Requiert peu de modification du réseau existant
- le Multicast demande plus de ressources que l’ Unicast
•
La seconde solution d’architecture Multicast Routing dans RNC :
- Demande une modification modéré du réseau existant.
- Réduit la création des circuits PDP dans le GGSN
- Réduit donc la charge dans le Cœur du réseau
•
La troisième solution d’architecture Multicast Routing dans Node-B
:
- Demande une modification substantiel du réseau existant
- On ne pourra pas réutiliser les mécanismes de l’UMTS existant
- La mobilité est visible pour l’arbre de diffusion multicast.
- Cette architecture est la bonne solution si on utilise une solution
*
All rights reserved for DESS-IRS
77
avec des protocoles propriétaire dans le UTRAN