Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Tentative Schedule: Weeks 1-2: Basic Ideas of Probability • Intro, Events, Sample Space, Venn Diagram Baron 2.1-2.2; Hofmann 1.1-1.2 • Kolmogorov Axioms, Corollaries Baron 2.2; Hofmann 1.3 • Counting Baron 2.3; Hofmann 1.4 • Conditional Probability, Independence Baron 2.4; Hofmann 1.5-1.7 • Bayes theorem, tree diagrams Baron 2.4; Hofmann 1.7 Weeks 3-4: Discrete Distributions. • Bernoulli Trials, Random Variables (RVs) Baron 3.4.1; Hofmann 1.8, 2.2.1, 2.0 • PMF of a Discrete RV Baron 3.1; Hofmann 2.1 • Expectation & Variance laws Baron 3.3; Hofmann 2.1.1, 2.1.2 • Specific Discrete Families: Binomial, Geometric, Poisson Baron 3.4; Hofmann 2.2.2, 2.2.3, 2.2.4 • Compound PMFs, Covariance, correlation Baron 3.3.5; Hofmann 2.2.5 Weeks 5-6: Continuous Distributions. • Continuous RVs, Probability Density Functions ( PDFs), Cumulative Distribution Functions (CDFs) Baron 4.1; Hofmann 2.3 • Specific Continuous Families: Uniform, Exponential, Erlang Baron 4.2; Hofmann 2.4.1, 2.4.2, 2.4.3 • Exponential, Erlang, Poisson Connections Hofmann 2.4.3 • Gamma Distribution Baron 4.2.3 • Normal Distribution Baron 4.2.4; Hofmann 2.4.4 Weeks 7-8: Simulation techniques. • • Elementary Simulation Baron 5.3; Hofmann 3.1,3.3 Random Number Generators Baron 5.2.1; Hofmann 3.2 • • • • Discrete Random Variates Baron 5.2.2; Hofmann 3.2.1 Inverse Transform Method Baron 5.2.3; Hofmann 3.2.2 Rejection Method Baron 5.2.4; Solving Problems by Monte Carlo methods Baron 5.3; Hofmann 3.3 Weeks 9-10: Stochastic processes. • • • Definition Baron 6.1; Hofmann Ch.4 Intro. Poisson Process Baron 6.3.2; Hofmann 4.1 Birth and Death Processes Hofmann 4.2 Weeks 11-12: Queuing Theory • • • • Introduction and Notation Hofmann Ch.5 Intro. Model as Stochastic Processes, Little’s Law Hofmann 5.1 Birth and Death Transition Diagrams, M/M/1 Queue Hofmann 5.2 M/M/1/K and M/M/c Queuing systems, Erlang’s C Formula Hofmann 5.3, 5.4 Weeks 13-15: Statistical Methods • • • • • Basic Concepts: population, sample, parameters, statistics, sampling Baron Ch.8 Intro., 8.1 Descriptive and graphical statistics Baron 8.2, 8.3 Statistical Inference: Parameter Estimation, Properties of Estimators Hofmann 6.1 Statistical Inference: Parameter Estimation, Method of Estimation: MoM and MLE Baron 9.1 Hofmann 6.1 Statistical Inference: Confidence Intervals for Means and Proportions Baron 9.2, 9.3 Hofmann 6.2 • Statistical Inference: Hypothesis Tests • Simple Linear Regression Baron 9.4 Hofmann 6.3 Baron 10.1 Hofmann 6.4