Download Document 8686750

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Probability wikipedia , lookup

Transcript
IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728,p-ISSN: 2319-765X, 6, Issue 6 (May. - Jun. 2013), PP 35-41
www.iosrjournals.org
Cash Flow Valuation Mode Lin Discrete Time
Olayiwola. M. A. and Oni, N. O.
Department of Mathematics and Statistics, The Polytechnic, Ibadan, Saki Campus.
Abstract: This research consider the modelling of each cash flow valuation in discrete time. It is shown that
the value of cash flow can be modeled in three equivalent ways under same general assumptions. Also,
consideration is given to value process at a stopping time and/ or the cash flow process stopped at some
stopping times.
I.
Introduction
It is observed that money has a time value that is to value an amount of money we get at some future
date we should discount the amount from the future date back to today.
In finance and economics, discounted cash flow analysis is a method of valuing a project, company, or
asset using the concept of the time value of money. All future cash flows are estimated and discounted to give
their present values. The sum of all future cash flows, both incoming and outgoing, is the net present value,
which is taken as the value or price of the cash flows in question.
Most future cash flows models in finance and economics are assumed to be stochastic. Thus, to value
these stochastic cash flow we need to take expectations.
1.1 Probability Space
Probability theory is concerned with the study of experiments whose outcomes are random; that is the
outcomes cannot be predicted with certainty. The collection Ω of all possible outcomes of a random experiment
is called a sample space. Therefore, an element of πœ” of Ω is called a sample point.
Definition 1: A collection ΰΈΏofΩis called a 𝜎-algebra if
(i)
β„¦πœ–ΰΈΏ
(ii)
Ω πœ– ΰΈΏ, then𝐴𝐢 πœ– ΰΈΏ
(iii)
For any countable collection 𝐴𝑛 , 𝑛 β‰₯ 1 οƒŒ ΰΈΏ we have π‘ˆπ‘› β‰₯ 1, 𝐴𝑛 πœ– ΰΈΏ
Definition 2: Let Ω be a sample space and ΰΈΏ is a 𝜎 βˆ’algebra of subsets of Ω. A function 𝑃 βˆ™ defined on ΰΈΏ and
taking values in the unit interval 0,1 is called a probability measure if
(i)
𝑃 Ω =1
(ii)
𝑃 𝐴 β‰₯0 βˆ€π΄πœ–ΰΈΏ
(iii)
π‘“π‘œπ‘Ÿ at most countable family 𝐴𝑛 , 𝑛 β‰₯ 1, of mutually disjoint events we have
𝑃 π‘ˆπ‘› β‰₯1 , 𝐴𝑛 =
𝑃 𝐴𝑛
𝑛 β‰₯1
The triple (Ω,ΰΈΏ, β„™) is called probability space. The pair (Ω,ΰΈΏ)is called the probabilizable space.
Definition 3: A probability space (Ω,ΰΈΏ, β„™)is called a complete probability space if every subset of a β„™- null event
is also an event.
1.1.1 Filtered Probability Space
Let (Ω,ΰΈΏ, β„™)be a probability space and F(ΰΈΏ) = ฿𝑑 = π‘‘πœ– π‘œ, ∞ , be a family of sub 𝜎 βˆ’algebraof ΰΈΏsuch that
(i)
(ii)
(iii)
฿𝑑 : π‘‘πœ–
ΰΈΏcontained all the ℙ– null member of ΰΈΏ
฿𝑠  ฿𝑑 whenever 𝑑 > 𝑠 β‰₯ 0 where ฿𝑠 is sub 𝜎 βˆ’algebra of ฿𝑑
F (ΰΈΏ) is right continuous in the sense that ฿𝑑+ = ฿𝑑 , 𝑑 β‰₯ 0 where ฿𝑠>𝑑 =∩ ฿𝑠>0 then F (ΰΈΏ) =
π‘œ, ∞ is called filtration of ΰΈΏ.
The quadruplet(Ω,ΰΈΏ, β„™,F (ΰΈΏ)) is called a filter probability space.
If F(ΰΈΏ) = ฿𝑑 : π‘‘πœ– π‘œ, ∞ is a filtration of ΰΈΏ, then ฿𝑑 is the information available about ΰΈΏ at time t while filtration F
(ΰΈΏ) describes the flow of information with time.
www.iosrjournals.org
35 | Page
Cash Flow Valuation Mode Lin Discrete Time
Definition 4: Let (Ω,ΰΈΏ, β„™,F(ΰΈΏ))be a filtered probability space with the filtration express as F (ΰΈΏ) = ฿𝑑 : π‘‘πœ– π‘œ, ∞
and let 𝑋 πœ‹ = 𝑋 𝑑 , 𝑑 πœ– πœ‹ be a stochastic process with values in R, then X(t) is called an adapted to the
filtration F(ΰΈΏ)if X(t) is ฿𝑑 measurable for 𝑑 πœ– πœ‹. Where X(t) is a random variable.
1.2 Mathematical Expectation
Let 𝑋 = 𝑒 0 (Ω , 𝑅𝑑 ), then the mean or mathematical expectation of X is defined by
𝐸 𝑋 =
𝑋 πœ” πœ‡ π‘‘πœ”
πœ”πœ–β„¦
Ω
If X has probability density function 𝑓π‘₯ which is absolutely continuous with respect to lebesgue measure then
𝐸 𝑋 =
𝑅𝑑
π‘₯𝑓π‘₯ π‘₯ 𝑑π‘₯
For a random variable 𝑋 = (𝑋1 , 𝑋2 , . . . 𝑋𝑛 )
𝐸 𝑋 = 𝐸(𝑋1 , 𝑋2 , . . . 𝑋𝑑 )
= 𝐸 𝑋1 βˆ™ 𝐸 𝑋2 βˆ™ βˆ™ βˆ™ 𝐸(𝑋𝑑 )
1.2.1 Conditional Expectation
Let X1 and X2 be two random variables, then the conditional expectation of X1 given that X2 = x2 is defined as
𝐸(𝑋1 |𝑋2 = π‘₯2 ) = 𝐸(𝑋1 |π‘₯2 )
=
π‘₯1 𝑓(π‘₯1 |π‘₯2 ) 𝑑π‘₯1
𝑓(π‘₯1 , π‘₯2 )
𝑑π‘₯1
𝑓(π‘₯2 ) > 0
𝑓(π‘₯2 )
Properties of Conditional Expectation
(i) Let π‘Ž , 𝑏 πœ– 𝑅 , 𝑋, π‘Œ π‘Žπ‘Ÿπ‘’ 𝐼𝑅 βˆ’ π‘£π‘Žπ‘™π‘’π‘’π‘‘ π‘Ÿπ‘Žπ‘›π‘‘π‘œπ‘š π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’π‘  π‘Žπ‘›π‘‘ F is a sub 𝜎 βˆ’algebra of ΰΈΏ then
𝐸[(π‘Žπ‘‹ + π‘π‘Œ)|F ] = 𝐸(π‘Žπ‘‹|F) + E( bY|F)
= π‘Ž 𝐸(𝑋|F) + 𝑏 𝐸( π‘Œ|F)
(ii) If 𝑋 β‰₯ 0 π‘Ž. 𝑠 , 𝑑𝑕𝑒𝑛 𝐸(𝑋|F )β‰₯ 0 π‘Ž. 𝑠 𝐸(βˆ™ |F ) is positively preserving.
=
π‘₯1
(iii) E( C∣F ) = C where C is a constant value.
(iv) If X is F - measurable, then E( X∣F ) = X
(v) If X is F - measurable, then E(X∣F ) = E(X)
(vi) If F1 and F2 are both 𝜎 βˆ’algebra ofΰΈΏ such that F1 οƒŒ F2 then
𝐸(𝐸(𝑋|F2∣F1) = E(X∣F1 ) a.s
(vii) If 𝑋 πœ– β„’ 𝐼 (Ω,ΰΈΏ, β„™) and 𝑋𝑛 β†’ 𝑋1 then𝐸(𝑋𝑛 | F )β†’ 𝐸(𝑋| F) in β„’ 𝐼 (Ω,ΰΈΏ, β„™)
(viii) If Ο†: 𝑅 β†’ 𝑅 is convex and Ο†(x)πœ– β„’ 𝐼 (Ω,ΰΈΏ, β„™)such that
E βˆ£Ο†(x)∣< ∞ then E (Ο†(x)∣F)β‰₯ Ο†E( X∣F ) a.s
(xi) If X is independent of F1then E(X∣F ) = E(X)
1.3 Stochastic Processes
Definition 5: Let 𝑋𝑑 πœ” , πœ” πœ– Ω , π‘‘πœ– π‘œ, ∞ be a family of Rd – valued random variable define on the
probability space (Ω,F, β„™) then the family 𝑋 𝑑, πœ” π‘‘πœ– π‘œ, ∞ of X is called a stochastic process πœ” πœ– Ω
A stochastic process 𝑋𝑑 𝑑, πœ” , πœ” πœ– Ω , 𝑑 πœ– πœ‹ is thus a function of two variables
X: T X Ω β†’ 𝑅𝑑 , 𝑋𝑑 π‘“π‘œπ‘Ÿ 𝑑 β‰₯ 0 is said to be Ft – adapted if for every 𝑑 β‰₯ 0, Xt is Ft measurable.
1.4 Martingale Process
Definition 6: A stochastic process 𝑋𝑛 𝑛β‰₯1 is said to be a Martingale process if
(i)
𝐸[𝑋 ∣ 𝑋𝑛 ] < ∞
(ii)
𝐸[𝑋𝑛+1 ∣ 𝑋1 , 𝑋2 , . .. 𝑋𝑛 ] = 𝑋𝑛
Definition 7: Let 𝑋 𝑑. πœ‹ = 𝑋 𝑑 , 𝑑 πœ– πœ‹ be an adapted R – valued stochastic process on a filtered probability
space (Ω,F, (Ft)t πœ–πœ‹ ,P) then X is called martingale if for each 𝑑 πœ– πœ‹  R E[X(t)∣F] = X(s) a.s s < t.
II.
Model Formulation
The discounted cash flow formular is derived from the future value formular for computing the time
value of money and compounding returns.
𝐢 = 𝑉(1 + π‘Ÿ)𝑛
www.iosrjournals.org
36 | Page
Cash Flow Valuation Mode Lin Discrete Time
Discounted present value (DPV) for one cash flow (FV) in one future period is expressed as
𝐢
𝑉=
= 𝐹𝑉(1 βˆ’ 𝑑)𝑛
(1 + π‘Ÿ)𝑛
Where,
οƒ˜ V is the discounted present value;
οƒ˜ C is the norminal value of a cash flow amount in a future periods;
οƒ˜ r is the interest rate, which reflects the cost of tying up capital and may also allow for the risk that the
payment may not be received in full;
π‘Ÿ
οƒ˜ d is the discount rate, which is
(1+π‘Ÿ)
οƒ˜ n is the time in years before the future cash flow occurs.
For multiple cash flows in multiple time periods to be discounted it is necessary to sum them and take the
expectation.
∞
𝐢
𝑉0 = 𝐸
. . . . . . . . (1)
(1 + π‘Ÿ)π‘˜
π‘˜=1
We take the expectation because we assume that most cash flows models are stochastic.
Introduction of the value at time 𝑑 β‰₯ 0 we have a dynamic model
∞
πΆπ‘˜
𝑉𝑑 = 𝐸𝑑
(1 + π‘Ÿ)π‘˜βˆ’π‘‘
π‘˜=𝑑+1
Here 𝐸𝑑 (βˆ™) is the expectation given information up to and including time t.
1
𝑙𝑒𝑑𝑑𝑖𝑛𝑔
π‘šπ‘˜ =
1+π‘Ÿ π‘˜
∞
𝑉0 = 𝐸
πΆπ‘˜ π‘šπ‘˜
π‘˜=1
2.1 General definitions
Definition 2.1 : A cash flow (𝐢𝑑 ) 𝑑 πœ– 𝑁 is a process adapted to the filtration Ft and that for each
𝑑 πœ– 𝑁, 𝐢𝑑 < ∞ π‘Ž. 𝑠
A cash flow process that is non-negative a.s will be referred to as a dividend process.
Definition 2.2 A discount process is a process π‘š: 𝑁 × π‘ × β„¦ β†’ 𝑅 satisfying
(i)
0 < π‘š 𝑠, 𝑑 < ∞ π‘Ž. 𝑠 βˆ€ 𝑠, 𝑑 πœ– 𝑁
(ii)
π‘š 𝑠, 𝑑, πœ” 𝑖𝑠 Fmax(s,t) – measurable βˆ€ 𝑠, 𝑑 πœ– 𝑁 π‘Žπ‘›π‘‘
(iii)
π‘š 𝑠, 𝑑 = π‘š 𝑠, 𝑒 π‘š 𝑒, 𝑑 π‘Ž. 𝑠 βˆ€ 𝑠, 𝑒, 𝑑 πœ– 𝑁 A discount process fulfilling
𝑖𝐼 0 < π‘š 𝑠, 𝑑 < 1 π‘Ž. 𝑠 βˆ€ 𝑠, 𝑑 πœ– 𝑁 𝑀𝑖𝑑𝑕 𝑠 ≀ 𝑑will be referred to as normal discount process
π‘š 𝑠, 𝑑 is interpreted as the stochastic value at time s of getting one unit of currency at time t, while π‘š 𝑑, 𝑠 will
be referred to as the growth of one unit of currency invested at time t, at time s. We write π‘šπ‘‘ = π‘š 0, 𝑑 , 𝑑 ∈ 𝑁
as a short-hand notation.
Definition 2.3 The discount rate or instantaneous rate at time t implied by discount process denoted by r t for t =
1, 2, . . . is defined as
1
𝛬 π‘‘βˆ’1
π‘Ÿπ‘‘ =
βˆ’1=
βˆ’1
π‘š(𝑑 βˆ’ 1, 𝑑)
𝛬 𝑑
Where ∧ is the deflator associated with m. The relationship between the discount process and rate process is
deducted from the following Lemma.
Lemma 1: Let m be a discount process and let r be the discount rate implied by m. Then the following holds:
(i)
βˆ’1 < π‘Ÿπ‘‘ < ∞,
π‘‘πœ–β„•
(ii)
π‘Ÿ β‰₯ 0 𝑖𝑓𝑓 π‘š 𝑖𝑠 π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™ π‘‘π‘–π‘ π‘π‘œπ‘’π‘›π‘‘ π‘π‘Ÿπ‘œπ‘π‘’π‘ π‘ 
(iii)
For any given 𝝀 β‰₯ 𝟎 we have for 𝑑 πœ– β„•
0 < 𝞴 < 𝒓𝒕 π’Šπ’‡π’‡
0 < π‘šπ‘‘ ≀ 𝑒 βˆ’π‘‘πΌπ‘› 1+πœ†
(iv)
The instantaneous rate process and discount process uniquely determine each other.
III.
Valuation of Cash Flow
Definition 3: Given a cash flow process Ct for 𝑑 πœ– β„• and a discount process π‘š 𝑠, 𝑑 for 𝑠, 𝑑 πœ– 𝑁 we
define for 𝑑 πœ– β„• the value process as
𝑉𝑑 = 𝐸[ βˆžπ‘˜=𝑑+1 πΆπ‘˜ π‘š(𝑑, π‘˜)|Ft ]
www.iosrjournals.org
37 | Page
Cash Flow Valuation Mode Lin Discrete Time
The value process is defined as ex – dividend if cash flows from time t+1 and onwards is included in the value
at time t. It is otherwise considered as cum – divided if the cash flow is included at time t.
The following lemma gives a sufficient condition as to when is the value process will be finite a.s
Lemma 2: If C is a cash flow process and 𝐸 | βˆžπ‘˜=1 πΆπ‘˜ π‘šπ‘˜ | < ∞ π‘Ž. 𝑠
Then |Vt| Λ‚ ∞ a.s for all 𝑑 πœ– β„•
Proof:
Since 𝐸 | βˆžπ‘˜=1 πΆπ‘˜ π‘šπ‘˜ | < ∞ for 𝑑 πœ– β„•
|Vt| = 𝐸[| βˆžπ‘˜=𝑑+1 πΆπ‘˜ π‘š(𝑑, π‘˜)|Ft ] = 𝐸[| βˆžπ‘˜=𝑑+1 πΆπ‘˜ π‘š(𝑑, 0)π‘š(0, π‘˜)|Ft ]
≀ π‘š(𝑑, 0)𝐸[| βˆžπ‘˜=𝑑+1 πΆπ‘˜ π‘š(0, π‘˜)|Ft ]
1
≀ π‘š (0,𝑑) 𝐸[| βˆžπ‘˜=𝑑+1 πΆπ‘˜ π‘šπ‘˜ |Ft ]
1
𝐸[| βˆžπ‘˜=1 πΆπ‘˜ π‘šπ‘˜ + βˆžπ‘˜=𝑑+1 πΆπ‘˜ π‘šπ‘˜
π‘šπ‘‘
1
𝐸[| βˆžπ‘˜=1 πΆπ‘˜ π‘šπ‘˜ |Ft + | π‘‘π‘˜=1 πΆπ‘˜ π‘šπ‘˜ |]< ∞
π‘šπ‘‘
≀
βˆ’
𝑑
π‘˜=1 πΆπ‘˜ π‘šπ‘˜ |Ft
]
≀
π‘Ž. 𝑠
Thus, if C is a discount process such that V0 Λ‚ ∞ , then Vt Λ‚ ∞ a.s for every 𝑑 πœ– β„•
Note that if X is a random variable with E|X| Λ‚ ∞ then E[X|Ft] for t = 1, 2, . . . , is a uniformly integrable (U.I)
martingale. Hence, if [| βˆžπ‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ |] Λ‚ ∞ a.s then 𝐸 [ βˆžπ‘˜ =0 πΆπ‘˜ π‘šπ‘˜ |Ft ] is a U.I martingale.
Below proposition gives the characteristics of value process
Proposition 2: Let C and m be a cash flow and discount process respectively. If [| βˆžπ‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ |] Λ‚ ∞ then the
discounted value process (𝑉 𝑑 π‘šπ‘‘ ) can be written as
𝑉 𝑑 π‘šπ‘‘ = 𝑀𝑑 βˆ’ 𝐴 𝑑 π‘“π‘œπ‘Ÿ 𝑑 πœ– β„•
Where M is a U.I martingale and A an adopted process. Furthermore,
lim 𝑉 𝑑 π‘šπ‘‘ = 0
π‘Ž .𝑠
𝑑 β†’βˆž
Proof:
Note that [|
𝐿𝑒𝑑
π‘˜ =0 𝐢 π‘˜ π‘šπ‘˜ |]
Λ‚ ∞ π‘Ž . 𝑠 𝑠𝑖𝑛𝑐𝑒𝐸
𝑀𝑑 = 𝐸 [ π‘˜ =0 𝐢 π‘˜ π‘šπ‘˜ |Ft] for 𝑑 πœ– β„•
∞
∞
[|
π‘˜ =0 𝐢 π‘˜ π‘šπ‘˜ |]
∞
Λ‚βˆž
𝑑
𝐴𝑑 =
𝐢 π‘˜ π‘šπ‘˜ ,
𝑑 πœ– β„•
π‘˜ =0
It is then immediate that 𝑉 𝑑 π‘šπ‘‘ = 𝑀𝑑 βˆ’ 𝐴 𝑑 . Since [| βˆžπ‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ |] Λ‚ ∞, M is a U.I martingale and A ia
adapted.
As 𝑑 β†’ ∞, the UI martingale
𝑀𝑑 = 𝐸 [ βˆžπ‘˜ =0 𝐢 π‘˜ π‘šπ‘˜ |Ft] = βˆžπ‘˜ =0 𝐢 π‘˜ π‘šπ‘˜ = 𝐴 ∞ π‘Ž . 𝑠
This implies that as 𝑑 β†’ ∞
lim 𝑉 𝑑 π‘šπ‘‘ = lim 𝑀𝑑 = lim 𝐴 𝑑 = 0
𝑑 β†’βˆž
𝑑 β†’βˆž
𝑑 β†’βˆž
Since π‘€βˆž = 𝐴 ∞ = βˆžπ‘˜ =0 𝐢 π‘˜ π‘šπ‘˜ is finite a.s . Now let C be dividend process.
Then A is an increasing process and 𝐸 𝐴 ∞ = 𝐸 [ βˆžπ‘˜ =0 𝐢 π‘˜ π‘šπ‘˜ ] < ∞ by assumption. Thus:
𝑉 𝑑 π‘šπ‘‘ = 𝐸 [ βˆžπ‘˜ =𝑑 +1 𝐢 π‘˜ π‘šπ‘˜ |Ft] = 𝐸 𝐴 ∞ Ft ] - At
Characteristics relation between C (cash flow process), m(discount process) and V(value process) is given in the
following theorem.
Theorem 3: Let C be a cash flow process and m a discount process such that E[|C k|mk] <∞. Then the following
three statements are equivalent.
(i)
For every 𝑑 πœ– β„•
𝑉 𝑑 = 𝐸 [ βˆžπ‘˜ =𝑑 +1 𝐢 π‘˜ π‘š(𝑑 , π‘˜ )|Ft]
(ii)
For every 𝑑 πœ– β„•
𝑑
𝑀𝑑 = 𝑉 𝑑 π‘šπ‘‘ +
𝐢 π‘˜ π‘šπ‘˜
π‘˜ =1
is a UI martingale
(b) 𝑉 𝑑 π‘šπ‘‘ β†’ 0 π‘Ž . 𝑠 𝑀 𝑕𝑒𝑛 𝑑 β†’ 0
(iii) For every 𝑑 πœ– β„•
𝑉 𝑑 = 𝐸 [π‘š(𝑑 , 𝑑 + 1)(𝐢 𝑑 +1 + 𝑉 𝑑 +1 )|Ft]
lim𝑇 β†’βˆž 𝐸 [π‘š 𝑑 , 𝑇 𝑉 𝑇 |Ft] = 0
(a)
(b)
Proof:
Note that 𝐸 |
show that
π‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ |
∞
≀ 𝐸[
π‘˜ =1 |𝐢 π‘˜ |π‘šπ‘˜ ]
∞
< ∞ which implies that |
www.iosrjournals.org
π‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ |
∞
< ∞ π‘Ž . 𝑠 Now to
38 | Page
Cash Flow Valuation Mode Lin Discrete Time
(i)  (ii) and
(i)  (iii)
(i)  (ii) The if part follows from the proposition. For the only if part the expression in (ii) a is written as
βˆ’π‘šπ‘˜ +1 𝐢 π‘˜ +1 = π‘šπ‘˜ +1 𝑉 π‘˜ +1 βˆ’ π‘šπ‘˜ 𝑉 π‘˜ βˆ’ π‘€π‘˜ +1 π‘€π‘˜
And take the sum from t to T – 1
𝑇
π‘šπ‘˜ 𝐢 π‘˜ = π‘šπ‘‡ 𝑉 𝑇 βˆ’ π‘šπ‘‘ 𝑉 𝑑 βˆ’ 𝑀𝑇 + 𝑀𝑑
βˆ’
π‘˜ =𝑑 +1
If we let 𝑇 β†’ ∞ the term π‘šπ‘‡ 𝑉 𝑇 β†’ 0 π‘Ž . 𝑠 by the assumption and 𝑀𝑇 β†’ π‘€βˆž a.s from the convergence result of
UI martingales. Thus, we have
∞
𝑉 𝑑 π‘šπ‘‘ =
𝐢 π‘˜ π‘šπ‘˜ βˆ’ π‘€βˆž + 𝑀𝑑
. .. .. . . . . (1)
π‘˜ =𝑑 +1
It is observed that 𝐸 π‘€βˆž Ft ] = Mt from the convergence result of UI martingale. Taking conditional expectation
with respect to Ftof (1)
𝐸 𝑉 𝑑 π‘šπ‘‘ Ft ] = 𝐸 [ βˆžπ‘˜ =𝑑 +1 𝐢 π‘˜ π‘šπ‘˜ |Ft] - 𝐸 π‘€βˆž Ft ] + 𝐸 𝑀𝑑 Ft ]
𝑉 𝑑 π‘šπ‘‘ = 𝐸 [ βˆžπ‘˜ =𝑑 +1 𝐢 π‘˜ π‘šπ‘˜ |Ft] -𝑀𝑑 + 𝑀𝑑
𝑉 𝑑 π‘šπ‘‘ = 𝐸 [ βˆžπ‘˜ =𝑑 +1 𝐢 π‘˜ π‘šπ‘˜ |Ft]
1
π‘š
𝑉𝑑 =
𝐸 [ βˆžπ‘˜ =𝑑 +1 𝐢 π‘˜ π‘šπ‘˜ |Ft] = 𝐸 [ βˆžπ‘˜ =𝑑 +1 𝐢 π‘˜ π‘˜ |Ft]
π‘šπ‘‘
π‘šπ‘‘
= 𝐸 [ βˆžπ‘˜ =𝑑 +1 𝐢 π‘˜ π‘š(𝑑 , π‘˜ )|Ft]
Note:
(i)
π‘€βˆž = 𝐴 ∞ = βˆžπ‘˜ =1 𝐢 π‘˜ π‘šπ‘˜
𝐸 π‘€βˆž Ft ] = 𝐸 [ βˆžπ‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ |Ft] = 𝑀𝑑
(ii)
𝐸 𝑀𝑑 Ft ] = 𝐸 [ βˆžπ‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ |Ft | Ft] = 𝐸 [ βˆžπ‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ |Ft]
Regarding (i)  (iii)
We begin with the if part. Fix 𝑑 πœ– β„•
𝑉 𝑑 = 𝐸 [π‘š(𝑑 , 𝑑 + 1)𝐢 𝑑 +1 + βˆžπ‘˜ =𝑑 +2 𝐢 π‘˜ π‘š(𝑑 , π‘˜ ) |Ft]
𝑉 𝑑 = 𝐸 [π‘š(𝑑 , 𝑑 + 1)𝐢 𝑑 +1 + π‘š(𝑑 , 𝑑 + 1) βˆžπ‘˜ =𝑑 +2 𝐢 π‘˜ π‘š(𝑑 + 1, π‘˜ ) |Ft]
𝑉 𝑑 = 𝐸 [π‘š(𝑑 , 𝑑 + 1)𝐢 𝑑 +1 + βˆžπ‘˜ =𝑑 +2 𝐢 π‘˜ π‘š(𝑑 + 1, π‘˜ ) |Ft]
𝑉 𝑑 = 𝐸 [π‘š(𝑑 , 𝑑 + 1)𝐢 𝑑 +1 + 𝑉 𝑑 +1 |Ft]
π‘π‘œπ‘€ 𝑙𝑒𝑑 𝑇 β‰₯ 𝑑 . πΉπ‘Ÿπ‘œπ‘š 𝑉 𝑇 = βˆžπ‘˜ =𝑇 +1 𝐢 π‘˜ π‘š(𝑇 , 𝐾 ) |Ft
We have
𝑉 𝑇 = 𝐸 [ βˆžπ‘˜ =𝑇 +1 𝐢 π‘˜ π‘š(𝑇 , π‘˜ )π‘š(𝑑 , π‘˜ ) |FT]
π‘š(𝑑 ,π‘˜ )
= 𝐸 [ βˆžπ‘˜ =𝑇 +1 𝐢 π‘˜ π‘š(𝑑 ,𝑇 ) |FT]
𝑉 𝑇 π‘š(𝑑 , 𝑇 ) = 𝐸 [
∞
π‘˜ =𝑇 +1 𝐢 π‘˜ π‘š(𝑑 , π‘˜ ) |FT] . . . . . . . . . . . . . (2)
Taking conditional expectation with respect to FT of (2)
𝐸 [𝑉 𝑇 π‘š(𝑑 , 𝑇 )/𝐹 𝑇 ] = 𝐸 [ βˆžπ‘˜ =𝑇 +1 𝐢 π‘˜ π‘š(𝑑 , π‘˜ ) |FT|FT]
= 𝐸 [ βˆžπ‘˜ =𝑇 +1 𝐢 π‘˜ π‘š(𝑑 , π‘˜ ) |FT]
1
=
𝐸 [ βˆžπ‘˜ =𝑑 +1 𝐢 π‘˜ π‘šπ‘˜ |Ft]
π‘šπ‘‘
Since βˆžπ‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ ≀ βˆžπ‘˜ =1 |𝐢 π‘˜ |π‘šπ‘˜
And the last random variable is integrable by assumption we get for every 𝑑 πœ– β„• and A πœ– Ft
lim 𝐸 π‘š 𝑑 , 𝑇 𝑉 𝑇 1𝐴 = lim π‘š 𝑑 , 𝑇 𝑉 𝑇 1𝐴 = 0
𝑇 β†’βˆž
𝑇 β†’βˆž
To prove the only if part we iterate (iii) a to get
𝑉 𝑑 = 𝐸 [ π‘‡π‘˜ =𝑇 +1 𝐢 π‘˜ π‘š 𝑑 , π‘˜ + π‘š(𝑑 , 𝑇 )𝑉 𝑇 |Ft]
1
𝑉𝑑 =
𝐸 [ βˆžπ‘˜ =𝑑 +1 𝐢 π‘˜ π‘šπ‘˜ |Ft] + 𝐸 [π‘š(𝑑 , 𝑇 )𝑉 𝑇 |Ft]
π‘šπ‘‘
𝐴𝑠 𝑇 β†’ ∞ π‘™π‘–π‘š
𝐸 [π‘š(𝑑 , 𝑇 )𝑉 𝑇 |Ft] β†’ 0 a.s from (iii)b since
𝑇
∞
𝐢 π‘˜ π‘šπ‘˜ ≀
π‘˜ =𝑑 +1
|𝐢 π‘˜ |π‘šπ‘˜
π‘˜ =1
And the last random variable is integrable by assumption. Thus, we get
𝑉 𝑇 = 𝐸 [ βˆžπ‘˜ =𝑑 +1 𝐢 π‘˜ π‘š(𝑑 , π‘˜ )|Ft] using the theorem of dominated convergence.
IV.
Stopping the cash flow and value process
Theorem3: Show that the three equivalent representations of the value process at deterministic times.
The theorem also assumes that cash flow stream is defined for all 𝑑 β‰₯ 0. In the stream, we shall consider the
value process stopping time and / or the cash flow process stopped at some stopping time. Using the fact that
the martingale
www.iosrjournals.org
39 | Page
Cash Flow Valuation Mode Lin Discrete Time
𝑀𝑑 = 𝑉 𝑑 π‘šπ‘‘ +
𝑑
π‘˜ =1 𝐢 π‘˜ π‘šπ‘˜
from theorem 3, is uniformly integrable we can get the following results.
Proposition 4: Let C and m be cash flow process and discount process respectively such that
𝐸 [ βˆžπ‘˜ =1 |𝐢 π‘˜ |π‘š(𝑑 , π‘˜ ) < ∞ for every 𝑑 πœ– β„• .
Further let 𝜏 π‘Žπ‘›π‘‘ 𝜎 be (Ft ) stopping times such that 𝜎 ≀ 𝜏 π‘Ž . 𝑠 then the following two statements are
equivalent.
(i)
We have
𝑉 𝜎 = 𝐸 [ πœŽπ‘˜ =𝜎 +1 𝐢 π‘˜ π‘š 𝜎 , π‘˜ + 𝑉 𝜏 π‘š(𝜎 , 𝜏 )1𝜏 <∞ |FΟƒ] {Οƒ Λ‚ ∞}
(ii)
(a) for every 𝑑 πœ– β„•
𝑑
𝑀𝑑 = 𝑉 𝑑 π‘šπ‘‘ +
𝐢 π‘˜ π‘šπ‘˜
π‘˜ =1
is a UI martingale, and
(b) 𝑉 𝑑 π‘šπ‘‘ β†’ 0 π‘Ž . 𝑠 π‘Šπ‘• 𝑒𝑛 𝑑 β†’ ∞
Proof: We start with (ii)  (i) considering the stopping times 𝜏 ∧ 𝑛
Where 𝑛 πœ– β„• because the stopping time 𝜏 may be unbounded we get
𝜏 βˆ§π‘›
π‘€πœ βˆ§π‘› = 𝑉 𝜏 βˆ§π‘› π‘šπœ βˆ§π‘› +
𝐢 π‘˜ π‘šπ‘˜ . . . . . . . . . . . (3)
π‘˜ =1
π‘Žπ‘  𝑛 β†’ ∞, 𝑉 𝜏 βˆ§π‘› π‘šπœ βˆ§π‘› β†’ 𝑉 𝜏 π‘šπœ 1𝜏 <∞ π‘Ž . 𝑠
Since 𝑉 𝜏 π‘šπœ 1𝜏 <∞ β†’ 0 π‘Ž . 𝑠
assuming we let 𝑛 β†’ ∞ Thus, we have from (3)
𝜏
𝑉 𝜏 π‘šπœ 1𝜏 <∞ +
𝐢
π‘š
π‘˜ =1 π‘˜ π‘˜
Since M is uniformly integrable we take conditional expectation of π‘€πœ
with respect to the 𝜎 βˆ’algebraFΟƒ to get on {Οƒ Λ‚ ∞}
𝐸 π‘€πœ FΟƒ ] = 𝐸 [ πœπ‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ + 𝑉 𝜏 π‘šπœ 1𝜏 <∞ |FΟƒ]
Note that 𝐸 π‘€πœ FΟƒ ] = π‘€πœŽ
Thus, π‘€πœŽ = 𝐸 [ πœŽπ‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ + πœπ‘˜ =𝜎 +1 𝐢 π‘˜ π‘šπ‘˜ + 𝑉 𝜏 π‘šπœ 1𝜏 <∞ |FΟƒ]
π‘€πœŽ = πœŽπ‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ + 𝐸 [ πœπ‘˜ =𝜎 +1 𝐢 π‘˜ π‘šπ‘˜ + 𝑉 𝜏 π‘šπœ 1𝜏 <∞ |FΟƒ]
π‘€πœ =
𝜎
π‘€πœŽ = 𝐸 [
π‘€πœŽ =
𝜎
π‘˜ =1 𝐢 π‘˜
π‘šπ‘˜ + 𝐸 [
𝜏
π‘˜ =𝜎 +1 𝐢 π‘˜
𝐢 π‘˜ π‘šπ‘˜ + 𝑉 𝜎 π‘šπœŽ 1𝜎 <∞
π‘˜ =1
π‘šπ‘˜ + 𝑉 𝜏 π‘šπœ 1𝜏 <∞ |FΟƒ]
It implies
𝜎
𝜎
𝜏
π‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ + 𝑉 𝜎 π‘šπœŽ 1𝜎 <∞ =
π‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ + 𝐸
π‘˜ =𝜎 +1 𝐢 π‘˜ π‘šπ‘˜ + 𝑉 𝜏 π‘šπœ 1𝜏 <∞ FΟƒ]
Hence,
𝑉 𝜎 π‘šπœŽ 1𝜎 <∞ = 𝐸 [ πœπ‘˜ =𝜎 +1 𝐢 π‘˜ π‘šπ‘˜ + 𝑉 𝜏 π‘šπœ 1𝜏 <∞ |FΟƒ]
π‘š
π‘š
𝑉 𝜎 = 𝐸 [ πœπ‘˜ =𝜎 +1 𝐢 π‘˜ π‘šπ‘˜ + 𝑉 𝜏 π‘šπœ 1𝜏 <∞ |FΟƒ]
π‘‰πœŽ = 𝐸[
𝜏
π‘˜ =𝜎 +1 𝐢 π‘˜
𝜎
𝜎
π‘š(𝜎 , π‘˜ ) + 𝑉 𝜏 π‘š(𝜎 , 𝜏 )1𝜏 <∞ |FΟƒ]
This is our desired result.
To prove (i)  (ii)
Let 𝜏 = ∞ π‘Žπ‘›π‘‘ 𝜎 = 𝑑 π‘“π‘œπ‘Ÿ 𝑑 πœ– β„• 𝑖𝑛 𝑖 𝑖 . 𝑒
𝑉 𝜎 = 𝐸 [ πœπ‘˜ =𝜎 +1 𝐢 π‘˜ π‘š(𝜎 , π‘˜ ) + 𝑉 𝜏 π‘š(𝜎 , 𝜏 )1𝜏 <∞ |FΟƒ]
𝑉 𝑑 = 𝐸 [ βˆžπ‘˜ =𝑑 +1 𝐢 π‘˜ π‘š(𝑑 , π‘˜ ) + 𝑉 ∞ π‘š(𝑑 , ∞)|Ft]
π‘š
π‘š
𝑉 𝑑 = 𝐸 [ βˆžπ‘˜ =𝑑 +1 𝐢 π‘˜ π‘šπ‘˜ + 𝑉 ∞ π‘šβˆž |Ft]
𝑉 𝑑 π‘šπ‘‘ = 𝐸 [
𝑑
π‘˜ =𝑑 +1 𝐢 π‘˜
𝑑
π‘šπ‘˜ + 𝑉 βˆžπ‘šβˆž|Ft]
π‘π‘œπ‘‘π‘’
𝑑 𝑕 π‘Žπ‘‘ 𝑉 𝑑 π‘šπ‘‘ β†’ 0 π‘Ž . 𝑠 𝑑 β†’ ∞ π‘Ž . 𝑠
𝑉 𝑑 π‘šπ‘‘ = 𝐸 [ βˆžπ‘˜ =𝑑 +1 𝐢 π‘˜ π‘šπ‘˜ |Ft]
𝑉 𝑑 π‘šπ‘‘ = 𝐸 [ π‘‘π‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ + βˆžπ‘˜ =𝑑 +1 𝐢 π‘˜ π‘šπ‘˜ βˆ’ π‘‘π‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ |Ft]
𝑉 𝑑 π‘šπ‘‘ = 𝐸 [ π‘‘π‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ βˆ’ π‘‘π‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ |Ft]
𝑉 𝑑 π‘šπ‘‘ = 𝐸 [ βˆžπ‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ |Ft] βˆ’ π‘‘π‘˜ =1 𝐢 π‘˜ π‘šπ‘˜
Since 𝐸 [ βˆžπ‘˜ =1 𝐢 π‘˜ π‘šπ‘˜ |Ft] is a UI martingale i.e 𝑀𝑑 Thus, we have
∞
𝑑
𝑉 𝑑 π‘šπ‘‘ = 𝑀𝑑 βˆ’
Hence, 𝑀𝑑 = 𝑉 𝑑 π‘šπ‘‘ +
𝑑
π‘˜ =1 𝐢 π‘˜
π‘šπ‘˜ as desired.
𝐢 π‘˜ π‘šπ‘˜
π‘˜ =1
www.iosrjournals.org
40 | Page
Cash Flow Valuation Mode Lin Discrete Time
V.
Conclusion
We have been able to show that cash flow models can be written in equivalent forms using a suitable
discount factor. We proceed to consider the value process stopping at stopping time and / or cash flow process
stopped at some stopping times with the use of a proposition.
References:
[1]. Akepe A. O (2008): Option Pricing on Multiple Assets M.Sc. Project University of Ibadan
[2]. Armerin F. (2002): Valuation of Cash flow in Discrete Time working paper Ayoola E. O: Lecture note on Advance Analysis Lebesgue
Measure University of Ibadan, Unpublished
[3]. Ugbebor O. O (1991): Probability Distribution and Elementary Limit Theorems.
[4]. University of Ibadan External Studies Programme University Of Ibadan
[5]. Elliott R. J (1982): Stochastic Calculus and Applications, Springerverlag
[6]. Pratt, S. et al (2000): Valuing a Business. McGraw-Hill Professional. McGraw Hill
[7]. Williams, D. (1999): Probability with Martingales, Cambridge University Press Ξ¦Ksendal, B. (1998): Stochastic differential Equation,
Fifth Edition, Springer - verlag
www.iosrjournals.org
41 | Page