Download The AGN obscuring torus

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
The AGN Obscuring Torus
Moshe Elitzur
University of Kentucky
& LAOG, Grenoble
Happy Birthday, young man!
optical depth
zone #
tz = tt
tz-1
z
i
Coupled
Escape
Probability
2
1
ti,i-1
Ti Ci pi  ni1 ni2
ti
ti-1
t2
t1
t0 = 0
tij = |ti – tj|
2-level Atom
=
S  (1 )J  B(T)
10-3 :
Semi-infinite Atmosphere

tt = 500
Slab
(10-3  t  107)
Time
zones ALI
Time
%error
CEP ALI
CEP


C
N
 21 1  e E21 / kT  '
1   A 21
Ncr
zones ALI
%error, S
CEP ALI
CEP
20 0.39

36.3
104
1 0.03

99.5
55.5
40 1.10

23.9
45.7
20 1.02

88.2
23.0
100 4.39
0.06
10.9
14.0
40 3.29

79.8
15.5
200 11.6
0.89
5.5
5.4
100 12.6
.033
62.5
6.5
600 44.9
1.70
1.6
1.2
200 28.1
.085
46.4
2.2
Elitzur & Asensio Ramos 2006, MNRAS 365, 779
Unified Scheme for AGN
Toroidal
Obscuration
Required by
Unification
Schemes
Torus Properties
 From the statistics of type 1 vs type 2: H/R ~ 1
(Schmitt et al ’01)
 R=?
Must rely on IR emission
General folklore:
R  100 pc
Origin of the 100’s pc Torus – Modeling IR emission
Pier & Krolik 92
Pier & Krolik 93
5-10 pc
~100 pc
Dearth of IR emission in smooth-density models T  r


Granato et al ’94, ‘97:
•
Uniform density
•
Rout ~ 100 – 300 pc
•
 = 45°
Observations – NGC 1068, CO
Schinnerer et al ’00
at R ~ 70 pc, H ~ 9 – 10 pc  H/R ~ 0.15
Observations – NGC 1068, CO & H2
20 pc
140 pc
Galliano et al ’03:
H/R ~ 0.15
IR – Observations
 NGC1068: 2m imaging – R ~ 1 pc (Weigelt et al 04)
10m interferometry – R ~ 2 pc (Jaffe et al 04)
 Cen A:
2m – R < 0.5 pc (Prieto et al 04)
9 & 10m – R ~ 1.5 pc (Karovska et al 03)
 Circinus: 2m – R ~ 1pc (Prieto et al 04)
8 & 18m – R < 2 pc (Packham et al 05)
 NGC1097 & NGC5506: 2m – R < 5 pc (Prieto et al 04)
The Torus Size Crisis
 Observations – compact (pc-size) torus
 Theory – extended (100’s pc) torus
VLTI – NGC1068:
Jaffe et al ‘04
r  1.7 pc: T = 320 K
Poncelet et al ‘06
Lbol = 2·1045 erg s-1
T(r = 2pc) = 960 K
r(T = 320 K) = 26 pc
r(T = 226 K) = 57 pc
(Mason et al ’06)
Temperature in Clumpy Medium
Tmax
Tmin
Nenkova et al 2006
Temperature–Distance Relation
 Smooth density – T & R uniquely related
 Clumpy density – different T at same R
different R, same T
AGN Clumpy Torus: Size Effect
Ri = 0.9 pc L½12
Y = Ro/Ri
N  N0r -q exp(-2/2)
N0 = 5
 = 45º
tV = 60
Clumping solves the compact emission problem!
Dynamic Origin of Vertical Structure
Cloud accretion from the galaxy?
No need in a compact torus!
The Torus as a Disk-Wind Region
Bottorff et al 97
Unification Scheme
Grand Unification Scheme
masers
BLR
Torus
BAL
Emmering, Blandford & Shlosman 92
Cloud Properties in Torus-Wind
3
NH,23 rpc
Size – shear resistance:
R c  1016 cm 
Density:
n  10 cm
Mass:
Mc  7  103 M  NH,23 Rc2,16
7
3
M7
NH,23

R c,16
1/ 2
Magnetic field:
NH,23 T2 
B  2 mG  

R
 c,16 
Elitzur & Shlosman 2006
Water Masers – Glimpse of Torus Clouds?
NGC 3079
Kondratko, Greenhill & Moran ‘05
High-latitude features – disk rotational imprint: uplifted clouds
Outflow and Accretion
1

M

0
.
02
L
/

M
yr
acc
45


M
out  1  NT
H,23 v 6  I
1
/
2

Macc L 45
T
2
L 45  (  NH
v
I
)
,23 6


 M
out  Macc
Torus disappearance at L  1043 erg s-1 !
Narrow-line Seyfert 1 radio galaxies?
Chiaberge et al ’99; Whysong & Antonucci ‘04
Conclusions
 No bagel
 Toroidal Obscuration Required by Unified Scheme
– just a region in the disk-wind
Related documents