Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
The AGN Obscuring Torus Moshe Elitzur University of Kentucky & LAOG, Grenoble Happy Birthday, young man! optical depth zone # tz = tt tz-1 z i Coupled Escape Probability 2 1 ti,i-1 Ti Ci pi ni1 ni2 ti ti-1 t2 t1 t0 = 0 tij = |ti – tj| 2-level Atom = S (1 )J B(T) 10-3 : Semi-infinite Atmosphere tt = 500 Slab (10-3 t 107) Time zones ALI Time %error CEP ALI CEP C N 21 1 e E21 / kT ' 1 A 21 Ncr zones ALI %error, S CEP ALI CEP 20 0.39 36.3 104 1 0.03 99.5 55.5 40 1.10 23.9 45.7 20 1.02 88.2 23.0 100 4.39 0.06 10.9 14.0 40 3.29 79.8 15.5 200 11.6 0.89 5.5 5.4 100 12.6 .033 62.5 6.5 600 44.9 1.70 1.6 1.2 200 28.1 .085 46.4 2.2 Elitzur & Asensio Ramos 2006, MNRAS 365, 779 Unified Scheme for AGN Toroidal Obscuration Required by Unification Schemes Torus Properties From the statistics of type 1 vs type 2: H/R ~ 1 (Schmitt et al ’01) R=? Must rely on IR emission General folklore: R 100 pc Origin of the 100’s pc Torus – Modeling IR emission Pier & Krolik 92 Pier & Krolik 93 5-10 pc ~100 pc Dearth of IR emission in smooth-density models T r Granato et al ’94, ‘97: • Uniform density • Rout ~ 100 – 300 pc • = 45° Observations – NGC 1068, CO Schinnerer et al ’00 at R ~ 70 pc, H ~ 9 – 10 pc H/R ~ 0.15 Observations – NGC 1068, CO & H2 20 pc 140 pc Galliano et al ’03: H/R ~ 0.15 IR – Observations NGC1068: 2m imaging – R ~ 1 pc (Weigelt et al 04) 10m interferometry – R ~ 2 pc (Jaffe et al 04) Cen A: 2m – R < 0.5 pc (Prieto et al 04) 9 & 10m – R ~ 1.5 pc (Karovska et al 03) Circinus: 2m – R ~ 1pc (Prieto et al 04) 8 & 18m – R < 2 pc (Packham et al 05) NGC1097 & NGC5506: 2m – R < 5 pc (Prieto et al 04) The Torus Size Crisis Observations – compact (pc-size) torus Theory – extended (100’s pc) torus VLTI – NGC1068: Jaffe et al ‘04 r 1.7 pc: T = 320 K Poncelet et al ‘06 Lbol = 2·1045 erg s-1 T(r = 2pc) = 960 K r(T = 320 K) = 26 pc r(T = 226 K) = 57 pc (Mason et al ’06) Temperature in Clumpy Medium Tmax Tmin Nenkova et al 2006 Temperature–Distance Relation Smooth density – T & R uniquely related Clumpy density – different T at same R different R, same T AGN Clumpy Torus: Size Effect Ri = 0.9 pc L½12 Y = Ro/Ri N N0r -q exp(-2/2) N0 = 5 = 45º tV = 60 Clumping solves the compact emission problem! Dynamic Origin of Vertical Structure Cloud accretion from the galaxy? No need in a compact torus! The Torus as a Disk-Wind Region Bottorff et al 97 Unification Scheme Grand Unification Scheme masers BLR Torus BAL Emmering, Blandford & Shlosman 92 Cloud Properties in Torus-Wind 3 NH,23 rpc Size – shear resistance: R c 1016 cm Density: n 10 cm Mass: Mc 7 103 M NH,23 Rc2,16 7 3 M7 NH,23 R c,16 1/ 2 Magnetic field: NH,23 T2 B 2 mG R c,16 Elitzur & Shlosman 2006 Water Masers – Glimpse of Torus Clouds? NGC 3079 Kondratko, Greenhill & Moran ‘05 High-latitude features – disk rotational imprint: uplifted clouds Outflow and Accretion 1 M 0 . 02 L / M yr acc 45 M out 1 NT H,23 v 6 I 1 / 2 Macc L 45 T 2 L 45 ( NH v I ) ,23 6 M out Macc Torus disappearance at L 1043 erg s-1 ! Narrow-line Seyfert 1 radio galaxies? Chiaberge et al ’99; Whysong & Antonucci ‘04 Conclusions No bagel Toroidal Obscuration Required by Unified Scheme – just a region in the disk-wind