Download PowerPoint

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Normal Random Variables
Lecture XII
Univariate Normal Distribution.
• Definition 5.2.1. The normal density is
given by
2

1
1 x  m  
f x  
exp 
    x  , s  0
2
2 s
 2 s

• When X has the above density, we write
symbolically X~N(m,s2).
Mean and Variance of Normal
Distribution
• Theorem 5.2.1. Let X be distributed
N(m,s2). Then E[X]= m and V[X]= s2
EX   


z
 1 x  m 
x
exp


2
2
2 s
 2 s
2
1
xm
s
 x  zs  m
dx  sdz

 dx

1
 1 2

EX   
zs  m  exp  z  dz

2 s
 2 

1
 1 2
2

zs exp  z  dz

2 s
 2 

1
 1 2
 m
exp  z  dz

2
 2 





1
 1 2
 1 2
2
zs exp  z  dz  C  z exp  z  dz

2 s
 2 
 2 


 1 2

 C  exp  z   0

2

 

2

1
1 x  m  
2

V X  
x  m  exp 
dx

2

2 s 
 2 s


1
 1 2
2


zs  m  m  exp  z sdz

2 s 
 2 
1  2 2
 1 2

z s exp  z  dz

2 
 2 

 1 2
u   z dv   z exp  z 
 2 
 1 2
du  1 v  exp  z 
 2 




 1 2
 1 2
 1 2

 z z exp  2 z  dz   z exp  2 z    exp  2 z  dz


• The first term of the integration by parts is
clearly zero while the second is defined by
polar integral. Thus,
V X   0  s
2



1
 1 2
2
exp  z  dz  s
2
 2 
Normality of a Linear
Transformation
• Theorem 5.2.2. Let X be distributed N(m,s2)
and let Y=a+bX. Then we have
Y~N(a+bm,b2s2).
• This theorem can be demonstrated using
Theorem 3.6.1 (the theorem on changes in
variables):
d
gy  f  y
dy

1

1
 x   a  bx  
1
y 
y a
b
d  y  1

dy
b
1
2

 y a
 

 m  

1
1 b

 
gy 
exp 
 2

s2
2 s b




 1  y  a  bm 2 
1

exp 

2 2
s b
2 s b
 2

• Note that probabilities can be derived for
any normal based on the standard normal
integral. Specifically, in order to find the
probability that X~N(10,4) lies between 4
and 8 (P[4<X<8]) implies:
P4  X  8  PX  8  PX  4
• Transforming each boundary to standard
normal space:
x1  10  6
z1 

 3
2
2
x2  10  2
z2 

 1
2
2
• Thus, the equivalent boundary becomes
P 3  z  1  Pz  1  Pz  3
where z is a standard normal variable.
These values can be found in a standard
normal table as P[z<-1]=.1587 and
P[z<-3]=.0013.
• As a first step, I want to graph two
distributions with the same mean and
variance.
• I want to start with a binomial distribution with
probability .5 and 20 draws.
• This distribution has a mean of 10 and a
variance of 5.
0.4500
0.4000
0.3500
0.3000
0.2500
0.2000
0.1500
0.1000
0.0500
0.0000
0
5
10
15
Binomial
Normal
20
25
0.0900
0.0800
0.0700
0.0600
0.0500
0.0400
0.0300
0.0200
0.0100
0.0000
0
-0.0100
20
40
60
80
100
120
Related documents