Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
2. Random variables Introduction Distribution of a random variable Distribution function properties Discrete random variables Point mass Discrete uniform Bernoulli Binomial Geometric Poisson 1 2. Random variables Continuous random variables Uniform Exponential Normal Transformations of random variables Bivariate random variables Independent random variables Conditional distributions Expectation of a random variable kth moment 2 2. Random variables Variance Covariance Correlation Expectation of transformed variables Sample mean and sample variance Conditional expectation 3 Introduction Random variables assign a real number to each outcome: X : X ( ) Random variables can be: Discrete: if it takes at most countably many values (integers). Continuous: if it can take any real number. RANDOM VARIABLES 4 Distribution of a random variable Distribution function F ( x) FX ( x) P( X x) RANDOM VARIABLES 5 Distribution function properties (i) F ( x) 0 when x (ii) F ( x) 1 when x (iii) F (x ) is nondecreasing. x1 x2 F ( x1 ) F ( x2 ) (iv) F (x ) is right-continuous. F ( x) F ( x0 ) when x x0 x x0 RANDOM VARIABLES 6 Distribution of a random variable For a random variable, we define Probability function Density function, depending on wether is either discrete or continuous RANDOM VARIABLES 7 Distribution of a random variable Probability function p( x) pX ( x) P( X x) verifies (i ) p ( x) 0 (ii ) p ( x) 1 x RANDOM VARIABLES 8 Distribution of a random variable Probability density function f (x ) verifies (i ) (ii ) f ( x) 0 f ( x)dx 1 We have x F ( x) f (t )dt and f ( x) F ' ( x). RANDOM VARIABLES 9 Distribution of a random variable F completely determines the distribution of a random variable. p ( x) a x b P(a X b) F (b) F (a) b f (t )dt a RANDOM VARIABLES 10 Discrete random variables Point mass X a P( X a) 1 0 if F ( x) 1 if 1-- 0 xa xa a RANDOM VARIABLES 11 Discrete random variables Discrete uniform X U (1,2,..., k ) 1 P( X i ) i 1,2,..., k k 1 2 3 k 1 2 3 k-1 k RANDOM VARIABLES 12 Discrete random variables Bernoulli X B(1, p) P( X 1) p P( X 0) 1 p p p 1-p 1-p 0 1 0 1 RANDOM VARIABLES 13 Discrete random variables Binomial Successes in n independent Bernoulli trials with success probability p X B(n, p) n x P( X x) p (1 p) n x x n n! with x x!(n x)! x 0,1,2,..., n RANDOM VARIABLES 14 Discrete random variables Geometric Time of first success in a sequence of independent Bernoulli trials with success probability p X G( p) P( X x) (1 p) x 1 p x 1,2,3,... RANDOM VARIABLES 15 Discrete random variables Poisson X expresses the number of “ rare events” X P( ), 0 e x P( X x) x! x 0, 1, 2,... RANDOM VARIABLES 16 Continuous random variables Uniform X U [ a, b] 1 for a x b f ( x) b a 0 otherwise 0 for x a x a F ( x) for a x b b a 1 for x b F(x) f(x) a b a b RANDOM VARIABLES 17 Continuous random variables Exponential 1 x for x 0 e f ( x) 0 for x 0 0 for x 0 x F ( x) 1 e for x 0 X exp( ) 1/ 1 F(x) f(x) 0 RANDOM VARIABLES 18 Continuous random variables Normal X N ( , 2) ( x )2 1 f ( x) exp 2 2 2 x 2 0 f(x) F(x) RANDOM VARIABLES 19 Continuous random variables Properties of normal distribution (i) X N (0,1) standard normal (ii) Z N (0,1) Z N ( , 2 ) (iii) X i N ( i , i2 ) independent i=1,2,...,n n n i i X i N ( i , i2 ) i RANDOM VARIABLES 20 Transformations of random variables X random variable with FX ; Y = r(x); distribution of Y ? r(•) is one-to-one; r -1(•). 1 1 FY ( y ) P(Y y ) P(r ( X ) y ) P( X r ( y )) FX (r ( y )) pY ( y ) P(Y y ) P(r ( X ) y ) P( X r 1 ( y )) p X (r 1 ( y )) fY ( y ) d dy 1 1 FX (r ( y )) f X (r ( y )) d r 1 ( y ) dy RANDOM VARIABLES 21 Bivariate random variables (X,Y) random variables; If (X,Y) is a discrete random variable p ( x, y ) probability joint function verifies : p ( x, y ) 0 p( x, y) 1 x, y If (X,Y) is continuous random variable f ( x, y ) probability density joint function verifies : f ( x, y ) 0 f ( x, y)dxdy 1 RANDOM VARIABLES 22 Bivariate random variables The marginal probability functions for X and Y are: p X ( x ) p ( x, y ) y pY ( y ) p( x, y ) x For continuous random variables, the marginal densities for X and Y are: f X ( x) f ( x, y )dy fY ( y) f ( x, y)dx RANDOM VARIABLES 23 Independent random variables Two random variables X and Y are independent if and only if: p( x, y ) p X ( x) pY ( y ) f ( x, y ) f X ( x) fY ( y ), for all values x and y. RANDOM VARIABLES 24 Conditional distributions Discrete variables p ( x, y ) p( x | y ) P( X x | Y y ) p( y ) Continuous variables f ( x, y ) f ( x | y) f ( y) If X and Y are independent: p( x | y ) p ( x) f ( x | y ) f ( x) RANDOM VARIABLES 25 Expectation of a random variable EX X xp( x) x EX X xf ( x)dx Properties: (i) E i i X i i E X i i 1,..., n i (ii) If X i , i 1,..., n are independent then: E X i EX i i i RANDOM VARIABLES 26 Moment of order k EX x p ( x) k k x EX x f ( x)dx k k RANDOM VARIABLES 27 Variance Given X with EX : VX E ( X ) 2 X 2 X VX ( E ( X ) ) 2 1/ 2 standard deviation RANDOM VARIABLES 28 Variance Properties: (i) V (aX b) a V ( X ) 2 (ii) If X i are independent then V ( ai X i ) ai V ( X i ) 2 i i (iii) VX EX (EX ) (iv) VX 0 2 2 VX 0 P( X a) 1 RANDOM VARIABLES 29 Covariance X and Y random variables; Cov( X , Y ) E ( X EX )(Y EY ) Properties (i) If X, Y are independent then cov( X , Y ) 0 (ii) Cov( X , Y ) EXY EXEY (iii) V(X + Y) = V(X) + V(Y) + 2cov(X,Y) V(X - Y) = V(X) + V(Y) - 2cov(X,Y) RANDOM VARIABLES 30 Correlation X and Y random variables; Cov( X , Y ) ( X ,Y ) VX VY RANDOM VARIABLES 31 Correlation Properties (i) 1 ( X , Y ) 1 (ii) If X and Y are independent then ( X , Y ) 0 (iii) ( X , Y ) 1 a 0 : Y aX b ( X , Y ) 1 a 0 : Y aX b RANDOM VARIABLES 32 Expectation of transformed variables Y r ( X ); Er ( X ) r ( x) p X ( x) x Er ( X ) r ( x) f X ( x)dx RANDOM VARIABLES 33 Sample mean and sample variance Sample mean 1 EX X X i n i Sample variance 1 2 V (X ) S (Xi X ) n 1 i 2 RANDOM VARIABLES 34 Sample mean and sample variance Properties X random variable; EX , VX ; X 1 ,..., X n i. i. d. sample, 2 Then: (i) EX (ii) VX 2 n (iii) ES 2 2 RANDOM VARIABLES 35 Conditional expectation X and Y are random variables; X | Y y. Then: E ( X | Y y ) x p( x | Y y ) x E ( X | Y y) x f ( x | y)dx Properties: EE ( X | Y ) EX RANDOM VARIABLES 36