Download on Randomized Classes

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
More on Randomized Class
– Def: A language L is in BPPc,s ( 0s(n)c(n)1, nN) if there
exists a probabilistic poly-time TM M s.t. :
• 1. wL, Pr[M accepts w]  c(|w|) ,
• 2. wL, Pr[M(x) accepts]  s(|w|) .
• Thm: (Amplification of BPP)
For all choices of poly. computable functions c(n) and s(n) : {0,1}n
{0,1}, such that there exists a poly. Q(n) s.t. n c(n)-s(n)  1/Q(n)
and m=O(1),
BPP  BPP m m .
c,s
1 2 n , 2 n
• Pf:
Given a BPP machine M with c(n), s(n). We construct a
BPP machine for the same language with c  1  2 n and s  2 n
for any m=O(1).
m
– Define M’:
1. Run M on k times independently.
2. Accept if the number of time M accepted is  k‧(c(n)+s(n))/2 .
Xi: indicator random variable for the event that M accepts w.
m
By the definition of BPPc,s we have:
• wL  E[Xi]  c(n) ,
• wL  E[Xi]  s(n) .
k
cM ' (n )  1  Pr[  X i
i 1
k
S M ' (n )  1  Pr[  X i
i 1
 c( n )  s ( n ) 
 k 
 | w  L]
2


 c( n )  s ( n ) 
 k 
 | w  L]
2


• Chernoff bound:
For any k independent identically distributed random variable X1,… Xk
with values in {0,1}, and with expected values E[Xi]=p, for any
(0,1),
–
k
Pr[  X i  kp(1   )]  e

2
3
pk
i 1
–
k
Pr[  X i  kp(1   )]  e
i 1

2
3
pk
Using Chernoff bounds, choose  with

c ( n)  s ( n)
c ( n)  s ( n)
and  
2c(n)
2 s ( n)
c ( n)  s ( n)
 c ( n)  s ( n)

So

c
(
n
)

(
1


)
and

s
(
n
)

(
1


)


2
2


Setting
3n m
3n m
k
and k 
2
c ( n)  
s ( n)   2
So
 c ( n)  s ( n) 
CM ' (n)  1  Pr[  X i  k  
 | w  L]
2


i 1
k
 1- e
-
2
3
c ( n )k
 1  2n
m
 c ( n)  s ( n) 
S M ' (n)  1  Pr[  X i  k  
 | w  L]
2


i 1
k
-
2
 s ( n ) k
nm
e
2
C M ' ( n)  S M ' ( n)  1 / Q ( n) .
3
■
• P/poly and circuit complexity
– Def: P/poly={ L | AP, a sequence of strings {Si}iN and a
constant k s.t. |Si|=O(ik) and xL  (x,S|x|)A }
– Def: A language L has poly circuit complexity if there exists a
constant k such that for all n, the function fn that is 1 iff its input
(of length n) is in L, has circuit complexity O(nk) .
• Prop: LP/poly iff L has poly. circuit complexity.
• Pf:
 : If L has poly circuit complexity, then for each n, there is a circuit
of size poly in n that decides membership in L for all words of length n.
Encode this circuit on a string, Sn ~ poly size.
Construct a poly time TM taking x and S|x| and simulate S|x| on input x.
 : Assume LP/poly.
If M decides L in TIME(O(nk)), then we can construct a circuit ck of
size O(n2k) that simulates M running on input strings of length n .
Hardwired in each machine will be the advice strings Sn, which is
constant for each input size n and which grows polynomial in n .
■
• Thm: BPP  P/poly.
• Pf:
Let L be an arbitrary language in BPP.
– By amplification of BPP, we have a TM M BPP  n2  n2
1 2 ,2
decides L .
Classify all possible random string R as follows:
• R is bad for an input x if M(x,R) is wrong.
• R is bad if there exists an input w for which R is bad.
• R is good otherwise.
Fix w, Pr[R is bad for w] 
1
2
n2
that
Pr[R is bad] 
 Pr[R is bad for w]  2  2
n
n 2
1
w{0,1}
n
Therefore, Pr[R is good] = 1-Pr[R is bad] > 0
Thus, there exists a poly size advice string for any input of length n.
■

2
P
CO  NP
NP
CO  RP
RP
P
BPP
• Thm: BPP  2P
(Sipser,Lautemann)
• Pf:
Suppose LBPP.
– Goal: Show that there is a 2P Machine that
decides L.
– I.e. show that  a deterministic poly time TM
M(x,y,z) s.t.
• xL  y s.t. z M(x,y,z)=1
• xL  y z s.t. M(x,y,z)=0 .
• Let A be a BPP machine that uses Q(n) random
bits with c(n)= ½ and s(n)=1/3Q(n) where n is the
input length and Q(n) is poly.
• Let R be the set of all random string of length Q(n)
used on A’s random tape. |R|=2Q(n) .
– Define Fs(y)=ys, sR, yR . Fs(y) is random
if s is chosen uniformly.
• Imagine a new machine, A’(x,y,S), where S is a
sequence random bits (s1,s2,…,sk), yR, x is the
input to test if xLA
• A’ is a deterministic TM s.t.:
A’(x,y,S)=1  siS, A accepts x with ysi on its
random tape.
If xLA, and a specific S is chosen at random, then
Pr [ A' ( x, y, S )  1]  Pr [si  S s.t. A( x, y  si )  1]
yR
yR
k
  Pr [ A( x, y  si )  1]
i 1
yR
 k  Pr [ A( x, y )  1]
yR
k
2Q (n) 2


3Q (n) 3Q(n) 3
1
 Pr [ A' ( x, y, S )  0] 
let k2Q(n)
yR
3

I.e. if xLA, then for any SRk, yR s.t. A’(x,y,S)=0 .
If xLA, and a specific y is chosen at random
Prk [ A '( x, y, S )  0]  Prk [si  S , A( x, y  si )  0]
SR
SR
 Prk [si  S , A( x, si )  0]
S R
k
1
 
2
Prk [y s.t. A '( x, y, S )  0] 
SR

Pr [ A '( x, y, S )  0]
y{0,1}Q ( n )
SR k
 2Q ( n )  Prk [ A '( x, y, S )  0]
S R
 2Q ( n ) 
 k 
 2 
Let k=2Q(n)
Pr [y  R, A' ( x, y, S )  1]  1  Prk [y, s.t. A' ( x, y, S )  0]
SR k
SR
2Q ( n )
 1  2Q ( n )  0
2
I.e. if xLA, then  an SRk, s.t. yR, A’(x,y,S)=1
Therefore, xLA  SRk, s.t. yR, A’(x,y,S)=1 .
So a 2P machine decides LA by guessing S, guessing all y
and checking A’(x,y,S)=1 .
• USAT:  is USAT if  is satisfied by exactly one truth assignment.
– Suppose  is satisfiable by at most one truth assignment. We want
to decide if USAT .
It turns out to decide USAT is as difficult as to decide SAT.
• Randomized reduction from SAT to USAT.
M: randomized poly-time TM M s.t.
– SAT  M()SAT (USAT)
– SAT  Prob[M()USAT]  1/8 .
• Universal Hashing:
Given sets S and T, a family H of functions from S to T is a
universal family of hash functions from S to T if
– 1) xS, wT, PrhH[h(x)=w]=1/|T|
– 2) xyS, w,zT,
PrhH[(h(x)=w)∧(h(y)=z)]=1/|T|2
• eg.
Let S={0,1}n, T={0,1}k and for x{0,1}n, let hM,b(x)=Mx+b,
where M is a k  n Boolean matrix, b is a column vector is
{0,1}k .
– H={ hM,b: for all possible M and b } .
• Prop: The above H is a family of universal hash functions from
{0,1}n to {0,1}k .
• Pf:

– 1) For any fixed x{0,1}n- 0 and y{0,1}k
Pr [h( x )  y ]  PrM ,b [ Mx  b  y ]
hH


z{0,1}k
PrM [ Mx  z ]  Prb [b  y  z ]
 2k  2  k  2  k  2  k
Pr[x+y+1=1]=?
– 2) For xy{0,1}n and w,z{0,1}k .
Pr [( h( x )  w)  h( y )  z )]  PrM ,b [ Mx  b  w  My  b  z ]
hH
 PrM ,b [ M ( x  y )  w  z  Mx  b  w]
 PrM [ M ( x  y )  w  z ]  PrM ,b [ Mx  b  w | M ( x  y )  w  z ]
 2 k  PrM ,b [ Mx  b  w]
 2 k  2 k
 22k
• Prop: xy

{0,1}n- 0
and w,z{0,1}k, we have
PrM[Mx=w∧My=z]=1/22k .
• Pf:
• If x and y are e1=(1,0,…,0) and e2=(0,1,0,…,0),
respectively, then it is true.

• Since neither x nor y is 0 , they’re linear independent.
• Thus, there exists rank n matrix A s.t. Ax=e1, and
Ay=e2 .
∵ rank(A)=n, MA is random if M is chosen randomly.
• So, the truth of the proposition is clear .
M
x
(a1,…,an)  (b1,…,bn)=c
fixed
Pr[a1b1+a2b2+…+anbn=c]=?
a1,a2,…,an{0,1} are selected randomly, c{0,1} .
• Prop: Let S{0,1}n, with 2k-2|S|2k-1 ,Then
Pr[! sS s.t. Ms= 0 ]1/8, where the probability is taken over
the uniform choice of M from the set of all k x n Boolean
matrices.

 
• Pf: 1) 0  S : M 0  0 .



–
Pr M [s  S , s  0, Ms  0] 
 Pr
 M
sS , s  0
 | S | 2
 1
 Pr[! s  S , s.t. Ms  0] 
2
k
[ Ms  0]
1

2
–
2) 0  S : For any fixed s  S , PrM [ Ms  0]  2  k and
t  s  S, PrM [ Mt  0  Ms  0]  2 2k , which implies
PrM [ Mt  0 | Ms  0]  2 k .


PrM [ Ms  0  t  s, Mt  0]



 PrM [ Ms  0]  PrM [t  s, Mt  0 | Ms  0]


k
 2 (1  PrM [t  s  S , Mt  0 | Ms  0]


k
 2 (1   PrM [ Mt  0 | Ms  0])
tS ,t  s
 2 k (1  2  k (| S | 1))  2  k 1 .


PrM [s, Ms  0  t  s  S , Mt  0]


  PrM [ Ms  0  t  s, Mt  0]
sS
| S | 2  k 1  1 / 8 .
• Successive restrictions:

x
Given a CNF formula  on n variables , choose n+1 random


vectors v1 ,..., vn 1 and create I for 1 i  n+1 as follows:
 
 
 
i    ( x  v1  0)  ( x  v2  0)  ...  ( x  vi  0)
• Lemma:
If  is not satisfiable, then none of the i’s are
satisfiable .
• Lemma:
If  is satisfiable, then with probability at least 1/8,
at least one of the i’s has a unique satisfying
assignment .
• Pf:
Let S be the set of satisfying assignments of : by
hypothesis |S|1. Let k be such that 2k-2|S|<2k-1 .
By the previous prop., k has a probability  1/8 of
having exactly one satisfying assignment .
Thus, detecting unique solutions is an hard as NP .
– UP:the class of promise problems where instances
are promised to whose either zero or one solution .
• Thm: NPRPUP .
• Thm: If UPRP, then NP=RP .
Related documents