Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Full Current Statistics in
Multiterminal Mesoscopic
Conductors
Dmitry A. Bagrets
Universität Karlsruhe
Collaboration: Yuli V. Nazarov
TU Delft
Technische Universiteit Delft
Outline
• What is Full Current Statistics? (N-terminal
• Circuit theory of FCS
(non-interacting regime)
• Master equation approach to FCS
(strong Coulomb blockade limit)
• Weak charge quantization and FCS
(weak Coulomb interaction)
• Conclusions
case)
Full Current Statistics
3-terminal case
N1 + N 2 + N 3 = 0
Current conservation
number of electrons transferred
Pt (N 1 , N 2 ) = full info
FCS in N-terminal case
• Generating function
exp{- S(  k )} =
 P (N
t
1
, N2 , N3 ) exp( i  k N k )
Nk
Action
k
Probability
• Currents
Ik
χ3
counting fields
e S
=
t  χk
• Noise correlations
e2  2 S
I k (t )I m (0) ~
t  χk  χm
• Higher order correlations
χ1
χ2
3-terminal circuit
Keldysh Method
• Effective Hamiltonian
Hˆ χ = Hˆ + 12  χ k Iˆk
+

χ(
τ
)
=
χ(τ
)
Keldysh path
n
• Generating function
exp{- S ( χ ) } = e
i Hˆ -χ t -i Hˆ χ t
e
( measuring device [spin] )
 Tτ exp[ 12 i  d  χ k (  )Iˆk ( )]
C
k
• Conventional Green function technique
τ
Circuit Theory
Non-interacting systems
Conductance
1
e2
R

• Semiclassical approach
-2f k 
 1 - 2f k
=

-2(
1
f
)
2
f
1
k
k


• Boundary conditions
G
• Gauge transform
Gk  e
(0)
k
i χ k τ 3 /2
(0) -i χ k τ 3 /2
k
G e
Minimal Action Principal
• Total action
S ( χ )   ij S ij ( χ )
• Action
2
i
G =1
Normalization condition
d
Sij ( χ )   
Tr ln[1 + 14 Tn(ij) ({Gi ,G j } - 2)]
2
n
• Saddle point
I
ik
0
( “1st Kirchhoff’s rule“ )
k
• Matrix current
( “2nd Kirchhoff’s rule“ )
Tn [Gi ,G j ]
d
I ij   
2 4 + Tn ({Gi ,G j } - 2)
n
Chaotic Quantum Dot
1
e2
R

• Connectors
1-tunnel
Tn << 1
2-diffusive
g0
1
ρ T  =
2 T 1 -T
3-ballistic
Tn = 1
I 1 = I 2 = -I 3 /2
Big current fluctuations!
Coulomb Blockade Dot
1
e
R
2

Coulomb blockade system
E
kT
e2
EC 
2C Σ
Markov process
• Master Equation
 t p(t) = - Lˆ p(t)
γ n   Γ m n
Lˆmn  δmn γ n  Γ mn ,
• “Orthodox” theory
(k)
Γ n±1
n
(
Rates
mn
Q = -e n
- charge quantized ! )
(k)
Δ En±1
1
n
 2
(k)
e Rk 1 - exp[- Δ En±
1n / k BT ]
• Limits of validity
1
e2
Rk

( No co-tunneling ! )
FCS + Master Equation
(1)  i χ1
ˆ
Γ e
Γˆ (k)
Time arrow
τn
τ
τ n+1
• Effective Master equation
 t p(t) = - Lˆ ( χ ) p(t)
• Generating function
(2)  i χ2
ˆ
Γ e
Γˆ (3)e i χ3
Lˆ ( χ )  γˆ   Γˆ (k)exp(i χ k )
k
S ( χ )   ln e -L( χ )t0 = t0 Λ min ( χ )
Coulomb Blockade Dot
Big current fluctuations!
Coulomb blockade
1 - U 1 = 1.25 e C Σ
2 - U1 = 2 e C Σ
3 - U1 = 4 e C Σ
4 - U 1 = 10 e C Σ
5 - no interaction
Weak Charge Quantization
Panyukov, Zaikin, ’91
Flensberg ’93, Matveev ’95
Nazarov ‘99
Free energy
F  F0 + EC 
n>0
CgVg 

fncos  2n

e


e2
G >>
πh
EC ~ ECexp  -  G GQ  - “Effective” charging energy
1/2
 2
 /8
-Tunnel junctions
- Diffusive contacts
Coulomb Island
g0   Tn[ k ] >> 1 - Conductance
n,k
EC  e 2 2C 
- Charging energy
ETh  g0
- Thouless energy
1/ RC  g0 EC - inverse RC-time
• Phase

= eV(t)
t
• Relations between energy scales
EC  ~ rs  L  F  >> 1
2
ETh  1  RC  min{ D/L2 , v F /L}
“Effective” Keldysh Action
exp[ S (  )]   D exp(   S[G,  ]d )
C
Interaction
-1
S =  Sk ({G[k]
,
G
})
+
iπ
δ
Tr{( i t -  )G} + S
χ
k
• Electrons
1
1 [k]


[k]
Sk = - Tr ln  1 + Tn {G χ , G} - 2 
2
4




• Electrostatic energy


i -1
S  Ec  d  2   2
2

G( t1 ,t 2 ) = TC ψ( t1 ) ψ + ( t 2 )
G2  1

Quantum corrections
• Weak localization correction:
( Random-matrix theory )
!
 g / g0 ~ 1/ g0
• Interaction correction
Inelastic ( eV  1/  RC )
2

 g / g0 ~ O  g0 EC /eV  


Elastic ( ETh << eV << 1/  RC )
g~
-2 n Tn (1 - Tn )

n
Tn
log  g0 EC /eV 
Divergent ! ?
 ~ 1/ | ω | g0
Dissipation!
Renormalization Group
• “Poor man’s” scaling
• RG Equations
“Running” cut-of
( 1-Loop order )
dTn
Tn (1 - Tn )
=2
d lnE
 m Tm
• RG diverges: Metallic saddle point is unstable !
At
E  EC , 1/ g (E )  
• Charging energy: Equivalence to instanton calculation !
 EC  1
[0]
ln 
~
ln(
1
-T


n )
 g0 EC  2 n
• Large phase fluctuations
Charge quantization !
[Q,f]=ie
Onset of Coulomb Blockade
• Critical conductance
 EC 
gC ~ α ln 

δ


-1
δ
Full Current Statistics
• Connectors
1-tunnel
Tn << 1
2-diffusive
g0
1
ρ T  =
2 T 1 -T
3-ballistic
Tn = 1
I 1 = I 2 = -I 3 /2
Conclusions
• The theory of FCS in N-terminal circuits:
- Non-interacting regime
- Coulomb blockade regime
- Weakly interacting regime
• Evaluation of probability of big current fluctuations
2
e
• Suppression of current fluctuation at 1
R 
• Renormalization of transmission eigenvalues
•Crossover to Coulomb blockade
regime at 1 << g < gC ~ α -1ln  EC 
 δ 
Related documents