Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Blood Proteomics and Cancer Biomarkers Sam Hanash Potential Conflict of Interest • Dr. Samir Hanash – None Blood based Signatures for Lung cancer/epithelial tumors DRUG EFFECT Infiltrating Cells Stroma Cytokines G.F. TUMOR TUMOR CELL GENOME MICROENVIRONMENT mutations Methylation changes Amplification Deletions/rearrangements BLOOD Nucleic acids: - Mutated DNA - Methylated DNA - Blood cell RNA profile, tumor MicroRNA Altered protein and metabolic profiles - Tumor cell derived - host response derived Immune response signatures - Immune cells - Cytokines/chemokines Circulating tumor cells DRUG EFFECT Infiltrating Cells Stroma Cytokines G.F. TUMOR MICROENVIRONMENT TUMOR CELL GENOME mutations Methylation changes Amplification Deletions/rearrangements BLOOD Nucleic acids: - Mutated DNA - Methylated DNA - MicroRNA Altered protein and metabolic profiles - Tumor cell derived - host response derived Immune response signatures - Immune cells - Cytokines/chemokines Circulating tumor cells Reviews • The grand challenge to decipher the cancer proteome. Hanash S, Taguchi A, Nature Reviews Cancer, Aug 2010 • Emerging molecular biomarkers and strategies to detect and monitor cancer from blood. Hanash S, Baik S, Kallioniemi O. Nat Rev Clin Oncology in press Lung Cancer Molecular Diagnostics Collaborative Group Nucleic acids: - Mutated DNA P. Mack UC Davis - Methylated DNA I. Laird, USC, A. Gazdar UT Southwestern - Tumor MicroRNA M. Tewari, FHCRC Altered protein and metabolic profiles - Proteomics S. Hanash FHCRC, S. Lam BCCA - Metabolomics O. Fiehn UC Davis Immune response signatures - Cytokines/Chemokines S. Dubinett, UCLA - Autoantibodies S. Hanash, FHCRC Circulating tumor cells S. Dubinett, UCLA Data integration and modeling J. Zhu and S. Friend SAGE Funding Support • NIH National Cancer Institute National Heart Lung and Blood Institute • Department of Defense Lung Cancer Research Program • Foundations Canary Foundation Labrecque Foundation Protect Your Lungs Foundation International Collaboration • Qinghua Zhou, Lung Cancer Insitute, Tianjin China • Tony Mok, Chinese University of Hong Kong • Tetsuya Mitsudomi. Nagoya, Japan • Rafael Rosell, Catalan Institute of Oncology, Barcelona, Spain Cohorts for Lung Cancer Studies • Carotene and Retinol Trial (CARET) Cohort • NYU and BCCA lung cancer screening Cohorts • Women’s Health Initiative Cohort • Physicians’ Health Study Cohort • Asian Cohort Consortium One million subjects with varying risks for smoking and non-smoking related lung cancer Proteomic signatures Chemical Modifications eg altered glycosylation Protein Cleavages eg shed receptors and adhesion molecules Alternative Splicing Isoforms Altered dynamics of protein sorting eg release of chaperone proteins Formation of complexes eg immune complexes Translational Implications Blood Based Lung Cancer Diagnostics • Assessment of lung cancer risk among smokers, former smokers and never smokers • Early detection • Diagnosis of indeterminate nodules • Development of a marker panel to monitor treatment response, disease regression and progression Which is cancer? Proteomic Signatures for Lung Cancer Blood collected 3-5 yrs prior to lung Ca Dx Protein signatures of risk Blood collected at Dx Molecular Classification Early detection Signatures Blood collected 0-18 months prior to Dx Proteomic Signatures for Lung Cancer Blood collected 3-5 yrs prior to lung Ca Dx Protein signatures of risk Blood collected at Dx Molecular Classification Early detection Signatures Blood collected 6-18 months prior to Dx Profiling strategies • Deep quantitative proteomic profiling to search directly in serum and plasma for circulating biomarkers • Proteomic profiling the humoral immune response to tumor antigens for seropositivity • Profiling for altered glycan structures in circulating proteins and tumor antigens Albumin Immunoglobulins mM –3 Major Serum Proteins Transferrin µM –6 Alkaline Phosphatase nM –9 10 Disease Tissue Markers • NSE 12 • PSA pM -12 TNF fM -15 aM -18 10 100 1’000 10’000 Signaling Proteins Controls Cases Immunodepletion (top X proteins) Concentration, buffer exchange and labeling SAMPLE A SAMPLE B Isotopic labeling Isotopic labeling SAMPLES MIXED ANION EXCHANGE CHROMATOGRAPHY REVERSE-PHASE CHROMATOGRAPHY Shotgun LC/MS/MS Of individual fractions EGFR 2.26 Plasma Profiling Strategies • Cases vs matched controls • Before and after tumor resection • Arterial vs venous comparison Overview of Project Tumor pulmonary venous effluent systemic radial arterial blood Pool samples Alkylation with HEAVY acrylamide Alkylation with LIGHT acrylamide Fractionation LC-MS/MS To identify differentially existing proteins in blood draining lung tumor 0.6 0.4 0.2 Area under the curve: 0.839 95% confidence interval (0.765, 0.913) J Clin Oncol 2009; 27:2787-92 0.0 Sensitivity 0.8 1.0 CXCL7 0.0 0.2 0.4 0.6 1-Specificity 0.8 1.0 Figure 5 Newly Dx EDRN set B 0.2 0.4 0.6 0.8 0.8 0.6 0.4 AUC = 0.839 0.0 True Positive Fraction AUC = 0.866 0.0 0.2 1.0 0.8 0.6 0.4 0.2 0.0 True Positive Fraction Pre-Dx CARET set 1.0 A 0.0 1.0 0-60-6mmonth fore Dx 0.6 0.8 1.0 0.2 0.4 0.6 0.8 False Positive Fraction 1.0 0.2 0.4 0.6 0.8 1.0 0.0 AUC = 0.888 0.0 True Positive Fraction 0.8 0.6 0.4 0.2 AUC = 0.893 0.0 True Positive Fraction 0.4 7-11m7-11before Dx month D 1.0 C 0.2 False Positive Fraction False Positive Fraction 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Fraction A.Taguchi, K. Politi et a Mouse models of cancer Human vs animal models • Substantial heterogeneity of human subjects • Engineered animal models mimic human disease counterparts • Sampling mice at defined stages of tumor development • Potential to identify markers for driver genes/pathways • Potential to target and refine therapy (Co-clinical) Mouse Models Studied to Date • Lung Cancer – Kras (Varmus/Politi), EGFR (Varmus/Politi), Urethane (Kemp/Schrump), Small Cell (Sage) • Breast Cancer – HER2/Neu (Chodosh), PyMT (Pollard), Telomerase (DePinho/Jaskelioff) • Colon Cancer – D580 APC (Kucherlapati) • Pancreatic Cancer – Kras (DePinho/Bardeesy) • Ovarian Cancer – Kras/Pten (Jacks/Dinulescu) • Prostate Cancer – Strain Comparison (DePinho) • Confounders – Acute Inflammation (Kemp/Spratt), Chronic Inflammation (Kemp/Spratt), • • Proteomic profiles from similar cancer types cluster together: Lung, breast, pancreatic Models with confounding conditions cluster together Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Politi K, Zakowski MF, Fan PD, Schonfeld EA, Pao W, Varmus HE. Genes Dev. 2006 Jun 1;20(11):1496-510) EGFR MOUSE MODEL EGFR MOUSE MODEL NETWORK #1 Cellular Assembly and Organization, Cancer, Cellular Movement EGFR MOUSE MODEL NETWORK #2 Hematological System Development and Function, Organismal Development, Cancer KRAS MOUSE MODEL KRAS MOUSE MODEL NETWORK #2 Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry C. Kemp K. Spratt S. Pitteri Rapid induction of mammary tumors following doxycycline treatment in an ERBB2 model of breast cancer (100% between 6-12 weeks) Rapid regression of mammary tumors following doxycycline withdrawl Additional controls: Models of inflammation and angiogenesis Chodosh Preclinical Chodosh 0.5 cm Chodosh 1.0 cm What lies ahead • Blood based diagnostics in combination with imaging for early detection • Risk factors and molecular signatures for common cancers • Further discoveries of driver mutations and altered pathways and networks through integrated genomics and proteomics Human Plasma Proteins 6607 6138 7000 5505 6000 5000 4000 3000 2000 1000 0 1% error total >=2 pep >=3 pep Further advances in Proteomic technology • Increased depth/breadth of analysis • PTMs: Cleavages, Glycosylation • Genomic analysis of proteomic data – Alternative splicing – SNPs colon_IP0036_AX06_SG39to40 colon_IP0037_AX02_SG33to34 colon_IP0037_AX04_SG25to26 colon_IP0037_AX05_SG31to32 colon_IP0037_AX05_SG39to40 colon_IP0037_AX07_SG41to42 colon_IP0037_AX08_SG31to32 colon_IP0038_AX03_SG01to25 colon_IP0038_AX06_SG40to41 colon_IP0039_AX04_SG39to40 colon_IP0039_AX06_SG39to40 colon_IP0039_AX08_SG25to26 colon_IP0041_AX02_SG43to72 colon_IP0041_AX04_SG37to38 colon_IP0041_AX06_SG39to40 colon_IP0042_AX01_SG01to24 colon_IP0042_AX01_SG39to40 colon_IP0042_AX01_SG41to42 colon_IP0042_AX01_SG43to72 colon_IP0042_AX02_SG39to40 colon_IP0042_AX03_SG01to24 colon_IP0042_AX03_SG41to42 colon_IP0042_AX04_SG41to42 colon_IP0042_AX04_SG43to72 colon_IP0042_AX05_SG39to40 colon_IP0042_AX05_SG41to42 colon_IP0042_AX06_SG41to42 colon_IP0042_AX07_SG41to42 colon_IP0042_AX08_SG33to34 colon_IP0043_AX01_SG41to42 colon_IP0043_AX02_SG41to42 colon_IP0043_AX05_SG39to40 colon_IP0043_AX05_SG41to42 colon_IP0043_AX06_SG39to40 hormone_IP0019_AX03_SG58to72_conc hormone_IP0021_AX02_SG48to57 hormone_IP0021_AX07_SG48to57 hormone_IP0021_AX08_SG48to57 hormone_IP0021_AX09_SG48to57 hormone_IP0021_AX11_SG48to57 hormone_IP0023_AX04_SG50to55 hormone_IP0028_AX04_SG47to52 lung_IP0022_AX01_SG50to53 lung_IP0022_AX02_SG50to53 lung_IP0022_AX04_SG50to53 lung_IP0022_AX05_SG50to53 lung_IP0022_AX06_SG50to53 lung_IP0022_AX07_SG50to53 lung_IP0022_AX08_SG50to53 lung_IP0022_AX12_SG50to53 lung_IP0024_AX04_SG50to53 lung_IP0024_AX12_SG50to53 ++++++++ 432_451 452_454 455_467 468_478 479_479 480_487 488_489 490_494 495_500 501_521 SLK EISDGDVIISGNK NLCYANTINWK K LFGTSGQK TK IISNR GENSCK ATGQVCHALCSPEGCWGPEPR 430_431 QHGQFSLAVVSLNITSLGLR 400_414 428_429 397_399 EITGFLLIQAWPENR TK 378_396 TVK 415_427 361_377 GDSFTHTPPLDPQELDILK GR 358_360 NCTSISGDLHILPVAFR TDLHAFENLEIIR 347_357 HFK 335_335 336_346 329_334 K DSLSINATNIK 328_328 CEGPCR VCNGIGIGEFK 326_327 295_297 K 294_294 CPR 325_325 285_293 K CK 262_284 YSFGATCVK 310_324 256_261 DTCPPLMLYNPTTYQMDVNPEGK K 254_255 DEATCK 298_309 253_253 FR ACGADSYEMEEDGVR 245_252 K NYVVTDHGSCVR 227_244 ESDCLVCR 225_226 210_212 SPSDCCHNQCAAGCTGPR 190_209 LTK 223_224 166_189 CDPSCPNGSCWGAGEENCQK GK 150_165 DIVSSDFLSNMSMDFQNHLGSCQK 213_222 139_149 FSNNPALCNVESIQWR CR 134_138 NLQEILHGAVR IICAQQCSGR 130_133 ELPMR 73_80 109_129 54_72 NYDLSFLK TGLK 38_53 MFNNCEVVLGNLEITYVQR 99_108 30_37 LTQLGTFEDHFLSLQR GNMYYENSYALAVLSNYDANK 29_29 VCQGTSNK 81_98 24_28 K IPLENLQIIR 3_23 ALEEK breast_IP0019_AX02_SG56to61_Run2 breast_IP0019_AX10_SG48to51 breast_IP0026_AX01_SG49to52 breast_IP0026_AX01_SG53to56_Run2 breast_IP0026_AX02_SG53to56_Run2 breast_IP0026_AX05_SG46to48_Run2 breast_IP0026_AX06_SG49to52 breast_IP0026_AX08_SG49to52_Run2 breast_IP0026_AX10_SG49to52 breast_IP0026_AX10_SG49to52_Run2 breast_IP0026_AX11_SG49to52 breast_IP0026_AX11_SG49to52_Run2 breast_IP0026_AX11_SG62to72_Run2 breast_IP0026_AX12_SG26to30 breast_IP0026_AX12_SG49to52 breast_IP0026_AX12_SG49to52_Run2 TIQEVAGYVLIALNTVER 1_2 PSGTAGAALLALLAALCPASR Pept_Sequences EXTRACELLULAR MR EGFR XXX XXX 0.83 0.82 0.83 0.94 0.94 1.1 0.92 0.73 XXX 0.47 0.87 XXX 1.06 XXX XXX XXX 1.02 XXX XXX XXX XXX 0.86 0.92 XXX XXX XXX 0.34 0.88 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX Selected 5 raw data for glycosylation investigation XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 0.83 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 2.26 EGFR 2.26 AX08 AX07 AX06 AX05 AX04 AX03 AX02 AX01 RP_SG39to40 RP_SG41to42 2nd D Asn 444 (K) QHGQFSLAVVGLNITSLGLR (S) 1st D Acknowledgements Genomic Studies Deep genomic sequencing Q. Zhou X. Yang, H. Xiao Tianjin Lung Cancer Inst. Shanghai Genome Center DNA methylation Adi Gazdar Ite Laird UT Southwestern USC DNA mutation detection in blood P. Mack, D. Gandara UC Davis Gene copy changes S. Lam, W. Lam BCCA Transcriptomic Studies RNA profiling D. Beer, J. Taylor, U of Michigan K. Shedden, R. Kuick D. Misek, T. Giordano A. Gazdar UT Southwestern MicroRNA M. Tewari FHCRC Metabolomic Studies Glycan analysis S. Myamoto C. Lebrilla U C Davis VOCs, Primary and secondary metabolites, Lipid profiles O. Fiehn UC Davis TK inhibitor Studies FHCRC K. Eaton, R. Martins, S. Wallace, M. McIntosh USC D. Agus, P. Mallick, K. Kani UCLA A. Jain Cohort Studies Women’s Health Initiative R. Prentice, C. Li FHCRC CARET G. Goodman M. Thornquist M. Barnett C. Edelstein FHCRC Physicians’ Health Study R. Perera A. Schneider Columbia U. New York CT Screening Cohort W. Rom N.Y.U Mouse models of cancer Ovarian model T. Jacks, D. Dinulescu MIT/Harvard Lung models K. Politi, H. Varmus MSKCC C. Kemp, K. Spratt FHCRC Colon Cancer R. Kucherlapati, K. Hung Harvard Pancreatic model R. DePinho, N. Bardeesy Dana Farber Breast cancer L. Chodosh, R. Depinho, C. Kemp MMHCC FHCRC Statistical Analysis Ziding Feng Mark Thornquist Matt Barnett Ross Prentice Martin McIntosh Charles Kooperberg Lynn Amon Pei Wang Lin Chen Aaron Aragaki Hanash Laboratory Mass spectrometry studies Hong Wang, Alice Chin, Vitor Faca, Allen Taylor Protein microarray studies Ji Qiu, Jon Ladd, Rebecca Israel, Tim Chao Database and software development Chee-Hong Wong, Qing Zhang Data analysis and validation studies Ayumu, Taguchi, Sharon Pitteri, Chris Baik, Sandra Faca, Ming Yu, Mark Schliekelman, Tina Buson, Melissa Johnson Funding Support National Cancer Institute - Early Detection Research Network - Glycomics Alliance - Cancer Centers of Nanotechnology Excellence - RO1 Mol. Epi. and lung Ca Case Control study R. Perera National Heart Lung and Blood Institute Canary, Labrecque, Avon, EIF, Paul Allen Foundations