Download Slide 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 12
DNA Technology and Genomics
PowerPoint Lectures for
Campbell Biology: Concepts & Connections, Seventh Edition
Reece, Taylor, Simon, and Dickey
© 2012 Pearson Education, Inc.
Lecture by Edward J. Zalisko
Figure 12.1A
Animation: Cloning a Gene
Figure 12.1B_s1
E. coli
bacterium
Bacterial
chromosome
A cell with DNA
containing the gene
of interest
Plasmid
1
2
A plasmid
is isolated.
Gene of
interest
The cell’s DNA
is isolated.
DNA
Figure 12.1B_s2
E. coli
bacterium
Bacterial
chromosome
A cell with DNA
containing the gene
of interest
Plasmid
1
2
A plasmid
is isolated.
The cell’s DNA
is isolated.
Gene of
interest
3
DNA
The plasmid is cut
with an enzyme.
4
The cell’s DNA is cut
with the same enzyme.
Gene
of interest
Figure 12.1B_s3
E. coli
bacterium
Bacterial
chromosome
A cell with DNA
containing the gene
of interest
Plasmid
1
2
A plasmid
is isolated.
The cell’s DNA
is isolated.
Gene of
interest
3
DNA
The plasmid is cut
with an enzyme.
4
The cell’s DNA is cut
with the same enzyme.
Gene
of interest
5
The targeted fragment
and plasmid DNA
are combined.
Figure 12.1B_s4
E. coli
bacterium
Bacterial
chromosome
A cell with DNA
containing the gene
of interest
Plasmid
1
2
A plasmid
is isolated.
The cell’s DNA
is isolated.
Gene of
interest
3
DNA
The plasmid is cut
with an enzyme.
4
The cell’s DNA is cut
with the same enzyme.
Gene
of interest
5
6
Recombinant
DNA
plasmid
The targeted fragment
and plasmid DNA
are combined.
DNA ligase is added,
which joins the two
DNA molecules.
Gene
of interest
Figure 12.1B_s5
Recombinant
DNA
plasmid
Gene
of interest
7
Recombinant
bacterium
The recombinant plasmid
is taken up by a bacterium
through transformation.
Figure 12.1B_s6
Recombinant
DNA
plasmid
Gene
of interest
7
The recombinant plasmid
is taken up by a bacterium
through transformation.
8
The bacterium
reproduces.
Recombinant
bacterium
Clone
of cells
Figure 12.1B_s7
Genes may be inserted
into other organisms.
Recombinant
DNA
plasmid
Gene
of interest
7
The recombinant plasmid
is taken up by a bacterium
through transformation.
Recombinant
bacterium
8
Clone
of cells
The bacterium
reproduces.
9
Harvested
proteins
may be
used
directly.
12.2 Enzymes are used to “cut and paste” DNA
 Restriction enzymes cut DNA at specific
sequences.
– Each enzyme binds to DNA at a different restriction
site.
 DNA ligase joins DNA fragments together.
Animation: Restriction Enzymes
© 2012 Pearson Education, Inc.
Figure 12.2_s1
1
DNA
Restriction enzyme
recognition sequence
A restriction
enzyme cuts
the DNA into
fragments.
2
Sticky
end
Restriction
enzyme
Sticky
end
Figure 12.2_s2
1
DNA
Restriction enzyme
recognition sequence
A restriction
enzyme cuts
the DNA into
fragments.
2
Sticky
end
A DNA fragment
from another
source is added.
Restriction
enzyme
Sticky
end
3
Gene of
interest
Figure 12.2_s3
1
DNA
Restriction enzyme
recognition sequence
A restriction
enzyme cuts
the DNA into
fragments.
2
Sticky
end
A DNA fragment
from another
source is added.
Two (or more)
fragments stick
together by
base pairing.
4
Restriction
enzyme
Sticky
end
3
Gene of
interest
Figure 12.2_s4
1
DNA
Restriction enzyme
recognition sequence
A restriction
enzyme cuts
the DNA into
fragments.
2
Sticky
end
A DNA fragment
from another
source is added.
Restriction
enzyme
Sticky
end
Gene of
interest
3
Two (or more)
fragments stick
together by
base pairing.
4
DNA ligase
pastes the
strands together.
5
DNA ligase
Recombinant
DNA molecule
Figure 18.3 Vectors for Carrying Recombinant DNA into Cells
Figure 18.11 Expression of Transgene in Host Cell Produces Large Amounts of its Protein Product
Table 12.6
Figure 18.5 Green Fluorescent Protein as a Reporter
Figure 12.4
CELL NUCLEUS
Exon Intron
DNA of a
eukaryotic
gene
Exon
Intron Exon
1 Transcription
RNA
transcript
2 RNA splicing (removes
introns and joins exons)
mRNA
3 Isolation of mRNA from
TEST TUBE
Reverse transcriptase
cDNA strand
being synthesized
the cell and the addition
of reverse transcriptase;
synthesis of a DNA strand
4 Breakdown of RNA
Direction
of synthesis
5 Synthesis of second
DNA strand
cDNA of gene
(no introns)
Figure 18.15 Transgenic Rice Rich in -Carotene
Figure 12.8A_s3
Agrobacterium
tumefaciens
DNA containing the
gene for a desired trait
Ti
plasmid
Restriction
site
1
The gene is
inserted into
the plasmid.
Plant cell
2
Recombinant
Ti plasmid
The recombinant
plasmid is
introduced into
a plant cell.
DNA carrying
the new gene
3
The plant cell
grows into
a plant.
A plant
with the
new trait
Related documents