Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 6 Physical Chemistry Chapter 6 Reaction Equilibrium in Ideal Gas Mixtures Physical Chemistry Chapter 6 Chemical Potentials in an Ideal Gas Mixture Chemical Potential of a Pure Ideal Gas dG SdT VdP dGm d Sm dT Vm dP (4.36) G i Gm ,i one-phase pure (4.86)* substance ni T , P RT d Vm dP dP P isothermal, pure ideal gas 2 P2 1 1 d RT P1 P dP P (T , P2 ) (T , P1 ) RT ln 2 isothermal, pure ideal gas (6.1) P1 P o (T ) RT ln o pure ideal gas, Po1 bar (6.2) P Chapter 6 Physical Chemistry Chemical Potentials in an Ideal Gas Mixture -o For a pure ideal gas RT 0 -RT Gm H m TSm 1 2 P/Po 3 H m f (T ) S m f (P) -2RT Fig. 6.1 T is fixed as P0 Chapter 6 Physical Chemistry Chemical Potentials in an Ideal Gas Mixture An ideal gas mixture (1) PV ntot RT Ideal gas mixture at T and P Pi xi P (2) The mixture is separated by thermally conducting rigid membrane permeable to gas i only, and Pi xi P membrane Pure gas mixture at Pi *and T Fig. 6.2 Po 1 bar i (T , P, x1 , x2 ,) i* (T , xi P) i* (T , Pi ) ideal gas mixture (6.3) Chapter 6 Physical Chemistry Chemical Potentials in an Ideal Gas Mixture Ideal gas mixture at T and P Pi xi P i (T , P, x1 , x2 ,) i* (T , xi P) i* (T , Pi ) ideal gas mixture (6.3) No intermolecular interaction, no effect on i from other gases in the mixture. membrane Pure gas mixture at Pi *and T Fig. 6.2 Pi i (T ) RT ln o P ideal gas mixture P o 1 bar o i (6.4)* The fundamental thermodynamic equation Chapter 6 Physical Chemistry Chemical Potentials in an Ideal Gas Mixture i - i o For an ideal gas mixture RT io (T ) Gmo ,i (T ) 0 io f (T ) -RT 1 2 Pi/Po -2RT Fig. 6.1 (modified) 3 P o 1 bar Physical Chemistry Chapter 6 Ideal Gas Reaction Equilibrium For the ideal-gas reaction aA bB cC dD (4.36) i i i 0 the equilibrium condition a A b B cC d D cC d D a A b B 0 Pi o i i (T ) RT ln o P PC PD o d dRT ln D Po Po P P a Ao aRT ln Ao b Bo bRT ln Bo 0 P P cCo cRT ln (6.4)* Chapter 6 Physical Chemistry Ideal Gas Reaction Equilibrium PC PD o d dRT ln D Po Po P P a Ao aRT ln Ao b Bo bRT ln Bo 0 P P cCo cRT ln cCo d Do a Ao b Bo PC PD PA PB (6.5) d ln a ln b ln ) o o o o P P P P GTo i i Gmo ,T ,i i io (T ) cCo d Do a Ao b Bo RT (c ln i the equilibrium condition c d a b P P P P C D A B o G RT ln o ln o ln o ln o P P P P Chapter 6 Physical Chemistry Ideal Gas Reaction Equilibrium c d a b P P P P G o RT (ln Co ln Do ln Ao ln Bo ) P P P P PC c PD d o o P P o G RT ln (6.6) a b PA PB o Po P c d P P C D o o P P K Po a b (6.7) P o 1 bar PA PB o o P P G o RT ln K Po Chapter 6 Physical Chemistry Ideal Gas Reaction Equilibrium c d PC PD o o P P K Po a b PA PB o o P P G o RT ln K Po P o 1 bar (6.7) the equilibrium condition i i 0 Pi ,eq i i i i i [ RT ln Po ] 0 Pi ,eq o i i i (T ) RT i ln Po 0 i o i (a b ) a b i i i i i i i and (6.8) ca i i c i ai Chapter 6 Physical Chemistry Ideal Gas Reaction Equilibrium io (T ) Gmo ,T ,i GTo i Gmo ,T ,i i io (T ) i (6.9) i i Pi ,eq Pi ,eq G RT i ln o RT ln o i i P P o T (6.10) n n i 1 i 1 ln ai ln a1 ln a2 ln an ln( a1a2 an ) ln ai n a i i 1 a1a2 an (6.11)* Chapter 6 Physical Chemistry Ideal Gas Reaction Equilibrium n a i a1a2 an i 1 (6.11)* i Pi ,eq o GT RT ln o ln ai ln ai i i 1 i 1 P i n Pi ,eq o GT RT ln o i 1 P i P i ,eq o K P o i P n n GTo RT ln K Po K Po e G o RT (6.10) (6.12) (6.13)* (6.14)* (6.15) Chapter 6 Physical Chemistry Ideal Gas Reaction Equilibrium GTo i Gmo ,T ,i i io (T ) i i K Po e G o RT (6.9) (6.15) Since GTo depends only on T, K Po for a given ideal-gas reaction is a function of T only. G o G o (T ) K Po K Po (T ) At a given temperature, K Po is constant for a given reaction. K o P the standard equilibrium constant the standard pressure equilibrium constant Chapter 6 Physical Chemistry Ideal Gas Reaction Equilibrium aA bB cC dD i Pi ,eq o K P o i P (6.13)* Since Pi P o is dimensionless, the standard equilibrium constant K Po is dimensionless. K P Pi ,eq i i (6.19) K P has dimensions of pressure raised to the change in mole numbers for the reaction as written. the equilibrium constant KP the pressure equilibrium constant Chapter 6 Physical Chemistry Ideal Gas Reaction Equilibrium aA bB fF dD i P i ,eq o K P o i P (6.13)* ni ci the molar concentration V ni RT Pi ci RT ideal gas mixture V K Po (6.21)* (6.22) (cF ,eq RT / P o ) f (cD ,eq RT / P o ) d (c A,eq RT / P o ) a (cB ,eq RT / P o )b (cF ,eq / c ) (cD ,eq / c ) c RT o o a o b (c A,eq / c ) (cB ,eq / c ) P o f o d o f d a b (6.23) Chapter 6 Physical Chemistry Ideal Gas Reaction Equilibrium aA bB fF dD K Po (cF ,eq RT / P o ) f (cD ,eq RT / P o ) d (c A,eq RT / P o ) a (cB ,eq RT / P o )b (cF ,eq / c ) (cD ,eq / c ) c RT o o a o b (c A,eq / c ) (cB ,eq / c ) P o f o d o c o 1 mol / liter 1 mol / dm3 f d a b (6.23) n/mol same dimension as Po i P i ,eq K Po o i P i ci ,eq o K P o i c (6.13)* (6.24) Chapter 6 Physical Chemistry Ideal Gas Reaction Equilibrium i Pi ,eq K o i P o P K Po P o 1 bar the standard equilibrium constant the standard pressure equilibrium constant i c i ,eq o K P o (6.24) i c c o 1 mol / liter 1 mol / dm3 K o c (6.13)* the standard equilibrium constant the concentration equilibrium constant Chapter 6 Physical Chemistry Ideal Gas Reaction Equilibrium K Po (cF ,eq RT / P o ) f (cD ,eq RT / P o ) d (c A,eq RT / P o ) a (cB ,eq RT / P o )b (cF ,eq / c ) (cD ,eq / c ) c RT o o a o b (c A,eq / c ) (cB ,eq / c ) P o f o d RTc K K o P o P o o c o f d a b (6.23) n / mol (6.25) i K x xi ,eq (6.26) i P K Kx o P o P n / mol (6.27) Chapter 6 Physical Chemistry van’t Hoff Equation o d 1 1 G o From (6.14) 2 ln K P dT T T RT d ln K Po G o d 1 / T 1 d (G o ) dT R dT RT dT d ln K Po G o 1 d (G o ) 2 dT RT RT dT (6.31) GTo i Gmo ,T ,i i io (T ) i (6.9) i G o i Gmo ,i i d d o (G ) dT dT o G i m,i i i i dGmo ,i dT (6.32) Chapter 6 Physical Chemistry van’t Hoff Equation dGm Sm dT Vm dP From Gm Sm T P dGmo ,i dT (6.31) S mo ,i d d o (G ) dT dT (6.33) o G i m,i i i i dGmo ,i dT d (G o ) i S mo ,i S o dT i (6.32) (6.34) Chapter 6 Physical Chemistry van’t Hoff Equation d ln K Po G o S o G o TS o 2 dT RT RT RT 2 G o H o TS o d ln K Po H o dT RT 2 d d o (G ) dT dT (6.36)* o G i m,i i i i dGmo ,i dT d (G o ) i S mo ,i S o dT i (6.32) (6.34) Chapter 6 Physical Chemistry Gibbs-Helmholtz Equation G H TS GH G H G T T T T P G G T T P T T T H G T H G G T T P T S G T P 1 G G G T P T T P T 1 T P G 1 G G 1 G G 2 T T P T T T P T T P T Chapter 6 Physical Chemistry Gibbs-Helmholtz Equation G 1 G G 1 G G 2 T T P T T T P T T P T T T H G T T P G H 2 T T T P When it is applied to changes G H 2 T T T P Physical Chemistry Chapter 6 van’t Hoff Equation o G From (6.14) ln K Po RT Differentiation of lnKPo with respect to temperature gives d ln K Po 1 d G o dT R dT T The differentials are complete because K and G depend only on temperature, not on pressure. Using Gibbs-Helmholtz equation G H 2 T T T P d ln K Po H o (6.36)* 2 dT RT Chapter 6 Physical Chemistry van’t Hoff Equation d ln K Po H o (6.36)* 2 dT RT o o T2 T2 H (T ) H o d ln K Po dT ln K dT P 2 2 T1 T1 RT RT o T2 H (T ) K Po (T2 ) ln o dT (6.37) 2 T 1 K P (T1 ) RT HTo A BT CT 2 ET 4 (6.38) K Po (T2 ) H o 1 1 ln o K P (T1 ) R T1 T2 (6.39) H o 1 1 ln K (T2 ) ln K (T1 ) R T1 T2 o P o P Chapter 6 Physical Chemistry van’t Hoff Equation The van’t Hoff equation is an expression for the slope of a graph of the equilibrium constant (specially, lnK) plotted against the temperature. It may be expressed in either of two ways: d ln K Po H o dT RT 2 d ln K Po H o R 1 d T d 1 1 dT T T2 (6.36)* (6.40) 1 1 d 2 dT T T Chapter 6 Physical Chemistry Ideal Gas Reaction Equilibrium N 2 ( g ) 3H 2 ( g ) 2 NH 3 ( g ) 2 PNH 3 QP the reaction quotient 3 PN 2 PH 2 K P Pi ,eq i (6.41) the equilibrium constant (6.19) i The equilibrium The extent of extent of reaction reaction eq 0 The reaction goes to right QP K P eq 0 The reaction reaches equilibrium QP K P QP K P eq 0 The reaction goes to left Chapter 6 Physical Chemistry Simultaneous Equilibria A system with several simultaneous reactions that have species in common. CH4 H 2O CO 3H 2 (6.47) CH4 2H 2O CO2 4H 2 n0,CH 4 1 mol, n0, H 2O 1 mol, n0,CO2 1 mol, n0, H 2 1 mol, n0,CO 2 mol K o P ,1 2 2 nCO (nH 2 ) P nCO2 (nH 2 ) P o o K P , 2 o (6.48) 2 nCH 4 nH 2O P ntot nCH 4 (nH 2O ) P ntot 3 4 Chapter 6 Physical Chemistry Simultaneous Equilibria At 600 K, CH3Cl(g) and H2O(g) react to form CH3OH, and then form (CH3)2O with a simultaneous equilibrium shown: CH3Cl ( g ) H 2O( g ) CH3OH ( g ) HCl ( g ) (1) 2CH3OH ( g ) (CH3 ) 2 O( g ) H 2O( g ) (2) K Po ,1 0.00154 , K Po , 2 10.6, Starting with equal amount of CH3Cl and H2O, find the equilibrium amounts of all species. Physical Chemistry Chapter 6 Simultaneous Equilibria Suppose that a system initially contains 1 mole of CH3Cl(g) and H2O(g), x moles of HCl and y moles of (CH3)2O are formed at equilibrium. CH3Cl ( g ) H 2O( g ) CH3OH ( g ) HCl ( g ) 1-x 1-x+y x-2y x (1) 2CH3OH ( g ) (CH3 ) 2 O( g ) H 2O( g ) x-2y y 1-x+y (2) ( x 2 y) x K 0.00154 (1 x)(1 x y ) y (1 x y ) o K P,2 10.6 2 ( x 2 y) o P ,1 Chapter 6 Physical Chemistry Simultaneous Equilibria Suppose that a system initially contains 1 mole of CH3Cl(g) and H2O(g), x moles of HCl and y moles of (CH3)2O are formed at equilibrium. ( x 2 y) x K 0.00154 (1 x)(1 x y ) y (1 x y ) K Po , 2 10.6 2 ( x 2 y) o P ,1 x 0.048 y 0.009 Physical Chemistry Chapter 6 Simultaneous Equilibria The equilibrium amounts of all species are CH3Cl ( g ) H 2O( g ) CH3OH ( g ) HCl ( g ) 0.952 0.961 0.03 0.048 (1) 2CH3OH ( g ) (CH3 ) 2 O( g ) H 2O( g ) 0.03 0.009 0.961 (2)