Download On Dimension Theory by Using Sets

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
On Dimension Theory by Using ๐‘ต โˆ’ ๐‘ถ๐’‘๐’†๐’ Sets
Enas Ridha Ali
Raad Aziz Hussain
College of Computer science and Mathematics University of AL-Qadisiya
[email protected]
[email protected]
Abstract
In this paper we discuss new type of dimension theory by using ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets. We the concept of
๐‘–๐‘›๐‘‘๐‘‹, ๐ผ๐‘›๐‘‘๐‘‹, ๐‘‘๐‘–๐‘š๐‘‹, for a topological space ๐‘‹ have been studied. In this work, these concepts will be extended by
using ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets.
Key words: ๐‘–๐‘›๐‘‘๐‘‹, ๐ผ๐‘›๐‘‘๐‘‹, ๐‘‘๐‘–๐‘š๐‘‹,
โ€ซุงู„ุฎุงู„ุตุฉโ€ฌ
๐‘–๐‘›๐‘‘๐‘‹, ๐ผ๐‘›๐‘‘๐‘‹, ๐‘‘๐‘–๐‘š๐‘‹, โ€ซููŠ ู‡ุฐุง ุงู„ุจุญุซ ู†ู†ุงู‚ุด ู†ูˆุน ุฌุฏูŠุฏ ู„ู†ุธุฑูŠุฉ ุงู„ุจุนุฏ ุจุฃุณุชุฎุฏุงู… ุงู„ู…ุฌู…ูˆุนุงุช ุงู„ู…ูุชูˆุญุฉ ู…ู† ุงู„ู†ู…ุท๐‘ ู„ู‚ุฏ ุฏุฑุณู†ุง ุงู„ู…ูุงู‡ูŠู…โ€ฌ
๐‘ โ€ซู„ู„ูุถุงุกุงุช ุงู„ุชุจูˆู„ูˆุฌูŠุฉ ๐‘‹ููŠ ู‡ุฐุง ุงู„ุนู…ู„ ุณูˆู ู†ูˆุณุน ู‡ุฐู‡ ุงู„ู…ูุงู‡ูŠู… ุจุฃุณุชุฎุฏุงู… ุงู„ู…ุฌู…ูˆุนุงุช ุงู„ู…ูุชูˆุญุฉ ู…ู† ุงู„ู†ู…ุทโ€ฌ.
๐‘–๐‘›๐‘‘๐‘‹, ๐ผ๐‘›๐‘‘๐‘‹, ๐‘‘๐‘–๐‘š๐‘‹ : โ€ซุงู„ูƒู„ู…ุงุช ุงู„ู…ูุชุงุญูŠุฉโ€ฌ
1. Introduction
Dimension theory starts with โ€œdimension functionโ€ which is a function defined on the
class of topological spaces such that ๐‘‘(๐‘‹) is an integer orโˆž, with the properties that ๐‘‘(๐‘‹) =
๐‘‘(๐‘Œ) if ๐‘‹ and ๐‘Œ are homeomorphism and ๐‘‘(๐‘… ๐‘› ) = ๐‘› for each positive integer ๐‘›. The dimension
functions taking topological spaces to the set{โˆ’1,0,1, โ€ฆ }. The dimension functions
๐‘–๐‘›๐‘‘, ๐ผ๐‘›๐‘‘, ๐‘‘๐‘–๐‘š, were investigated by [Pears ,1975]. Actually the dimension functions,
๐‘† โˆ’ ๐‘–๐‘›๐‘‘๐‘‹, ๐‘† โˆ’ ๐ผ๐‘›๐‘‘๐‘‹, ๐‘† โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ by using ๐‘† โˆ’ ๐‘œ๐‘๐‘’๐‘› sets were studied in [Raad Aziz Hussain ALAbdulla,1992], also the dimension functions, ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹, ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹, ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹, by using ๐‘ โˆ’
๐‘œ๐‘๐‘’๐‘› sets were studied in [Sama Kadhim Gabar,2010], and the dimension functions, ๐‘“ โˆ’
๐‘–๐‘›๐‘‘๐‘‹, ๐‘“ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹, ๐‘“ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹, by using ๐‘“ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets were studied in [Nedaa Hasan Hajee ,2011].
In this paper we recall the definitions of ind, Ind, dim, from [Pears ,1975], then the dimension
functions, ๐‘ โˆ’ ๐‘–๐‘›๐‘‘, ๐‘ โˆ’ ๐ผ๐‘›๐‘‘, ๐‘ โˆ’ ๐‘‘๐‘–๐‘š are introduced by using ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets. Finally some
relations between them are studied and some results relating these concepts are proved.
2. Preliminaries
In this section, we recall some of the basic definitions.
Definition 2.1[Omari, and Noorani,2009]: A sub set ๐ด of a space ๐‘‹ is said to
be an ๐‘ โˆ’
๐‘œ๐‘๐‘’๐‘› if for every ๐‘ โˆˆ ๐ด there exist an open sub set ๐‘ˆ๐‘ in ๐‘‹ such that ๐‘ˆ๐‘ โˆ’ ๐ด is a finite set. The
complement of an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set is said to be ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘.
Remark 2.2: 1. Every open set is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set.
2. Every closed set is an ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set.
The converse of (1) and (2) is not true in general as the following example shows:
Let ๐‘ be the set of integer numbers and ๐‘‡ be indiscrete topology on ๐‘, then ๐‘ โˆ’ {2,3} is an ๐‘ โˆ’
๐‘œ๐‘๐‘’๐‘› set, but its not an open set and ๐ต = {2,3} is an ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set, but not a closed set.
Remark 2.3: The family of all ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sub set of a space (๐‘‹, ๐‘‡) is denoted by ๐‘‡ ๐‘ .
Theorem 2.4[Omari, and Noorani,2009]: Let ๐‘‹ be a topological space, then ๐‘‹ with the set of
all ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sub set of ๐‘‹ is a topological space.
Corollary 2.5[Omari, and Noorani,2009]: Let ๐‘‹ be a topological space, then the intersection of
an open set and an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set.
595
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
Remark 2.6[Hamza and Majhool,2011]: Let ๐‘‹ be a space and ๐‘Œ be a sub space of ๐‘‹ such
that๐ด โІ ๐‘Œ, if ๐ด is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sub set in ๐‘‹ then ๐ด is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐‘Œ.
Proposition 2.7[Hamza and Majhool,2011]: 1. Let ๐‘‹ be a space and ๐‘Œ be an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› of ๐‘‹, if
๐ด is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐‘Œ then ๐ด is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐‘‹.
2. Let ๐‘‹ be a space and ๐‘Œ be a sub set of ๐‘‹ if ๐ต is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐‘‹ then ๐ต โˆฉ ๐‘Œ is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
in๐‘Œ.
Definition 2.8[Hashmiya Ibrahim Nasser,2012]: A space ๐‘‹ is called ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ if and only
if for each ๐‘ฅ โ‰  ๐‘ฆ in๐‘‹, there exists disjoint ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets ๐‘ˆ and ๐‘‰ such that ๐‘ฅ โˆˆ ๐‘ˆ, ๐‘ฆ โˆ‰
๐‘ˆ ๐‘Ž๐‘›๐‘‘ ๐‘ฆ โˆˆ ๐‘‰, ๐‘ฅ โˆ‰ ๐‘‰.
Remark 2.9: It is clear that every ๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ but the converse is not true in
general, as the following example shows: Let ๐‘‹ = {1,2,3}, ๐‘‡ = {๐‘‹, โˆ…, {1}, {2}, {1,2}}, the ๐‘ โˆ’
๐‘œ๐‘๐‘’๐‘› set is {๐‘‹, โˆ…, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}}, It is clear to see that ๐‘‹ is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ but is
not ๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’.
Proposition 2.10[Hashmiya Ibrahim Nasser,2012]: Let ๐‘‹ be a topological space, and then ๐‘‹
is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ if and only if {๐‘} is ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set for each ๐‘ โˆˆ ๐‘‹.
Definition 2.11[Hashmiya Ibrahim Nasser,2012]: A space ๐‘‹ is called ๐‘ โˆ’ ๐ป๐‘Ž๐‘ข๐‘ ๐‘‘๐‘œ๐‘Ÿ๐‘“๐‘“ if and
only if any two distinct points of ๐‘‹ has disjoint an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› neighborhoods.
Remark 2.12: Every ๐ป๐‘Ž๐‘ข๐‘ ๐‘‘๐‘œ๐‘Ÿ๐‘“๐‘“ space is ๐‘ โˆ’ ๐ป๐‘Ž๐‘ข๐‘ ๐‘‘๐‘œ๐‘Ÿ๐‘“๐‘“. But the convers is not true in
general.
Definition 2.13: A space ๐‘‹ is said to be ๐‘ โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space if and only if for each ๐‘ โˆˆ ๐‘‹ and ๐ถ
closed sub set such that๐‘ โˆ‰ ๐ถ, there exist disjoint ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets ๐‘ˆ, ๐‘‰ in ๐‘‹ such that ๐‘ โˆˆ ๐‘ˆ, ๐ถ โІ
๐‘‰.
Definition 2.14: A space ๐‘‹ is said to be ๐‘ โˆ— โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space if and only if for each ๐‘ โˆˆ ๐‘‹ and ๐ถ
๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sub set such that๐‘ โˆ‰ ๐ถ, there exist disjoint ๐‘œ๐‘๐‘’๐‘› sets ๐‘ˆ, ๐‘‰ in ๐‘‹ such that ๐‘ˆ open
set, ๐‘‰ is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set and ๐‘ โˆˆ ๐‘ˆ, ๐ถ โІ ๐‘‰.
Remark 2.15: 1. Every regular space is ๐‘ โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space but the convers is not true.
2. Every ๐‘ โˆ— โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space is ๐‘ โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space but the convers is not true.
As the following example shows: let ๐‘‹ = {1,2,3}, ๐‘‡ = {๐‘‹, โˆ…, {1}, {2}, {1,2}}, the ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set is
{๐‘‹, โˆ…, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}}, It is clear to see that ๐‘‹ is ๐‘ โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space, but ๐‘‹ is not
regular since {2,3} is closed set, 1 โˆ‰ {2,3} and there exist no disjoint two open set ๐‘ˆ, ๐‘‰ such that
1 โˆˆ ๐‘ˆ, {2,3} โІ ๐‘‰. Also ๐‘‹ is not ๐‘ โˆ— โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ, since {1,2} is ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set and 3 โˆ‰ {1,2}, but
there exist no disjoint open set ๐‘ˆ and ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘‰ such that 3 โˆˆ ๐‘ˆ, {1,2} โІ ๐‘‰.
Definition 2.16: A space ๐‘‹ is said to be ๐‘ โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ space if and only if for every disjoint
closed sets ๐ถ1 , ๐ถ2 there exist disjoint ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets ๐‘‰1 , ๐‘‰2 such that ๐ถ1 โŠ‚ ๐‘‰1 , ๐ถ2 โŠ‚ ๐‘‰2 .
Definition 2.17: A space ๐‘‹ is said to be ๐‘ โˆ— โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ space if and only if for every disjoint ๐‘ โˆ’
๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets ๐ถ1 , ๐ถ2 there exist disjoint ๐‘œ๐‘๐‘’๐‘› sets ๐‘‰1 , ๐‘‰2 such that ๐ถ1 โŠ‚ ๐‘‰1 , ๐ถ2 โŠ‚ ๐‘‰2 .
Definition 2.18: A space ๐‘‹ is said to be ๐‘ โˆ—โˆ— โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ space if and only if for every disjoint
๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets ๐ถ1 , ๐ถ2 there exist disjoint ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets ๐‘‰1 , ๐‘‰2 such that ๐ถ1 โŠ‚ ๐‘‰1 , ๐ถ2 โŠ‚ ๐‘‰2 .
Remark 2.19: 1. Every normal space is ๐‘ โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ but the convers is not true.
2. Every ๐‘ โˆ— โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ space is normal but the convers is not true.
Definition 2.20[N.Burbaki,1989]: A topological space ๐‘‹ is said to be compact if every open
cover of ๐‘‹ has a finite sub cover.
Definition 2.21[S.H.Hamza and F.M.Majhool,2011]: A topological space ๐‘‹ is said to be ๐‘ โˆ’
๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก if every ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› cover of ๐‘‹ has a finite sub cover.
596
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
Lemma 2.22[ Maheshwari, S.N.and Thakur,S.S., 1985]: 1. Every closed sub set of compact is
compact.
2. Every ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sub set of ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก is compact.
Definition 2.23: Let ๐‘‹ be a set and ๐ด a family of sub sets of ๐‘‹, by the order of the family ๐ด we
mean the largest integer ๐‘› such that the family ๐ด contains ๐‘› + 1 sets with a non-empty
intersection, if no such integer exists, we say that the family ๐ด has order โˆž. The order of a family
๐ด is denoted by ord ๐ด.
Definition 2.24: Let ๐‘‹ be a topological space the family ๐›ฝ of ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets is called a ๐‘ โˆ’
๐‘๐‘Ž๐‘ ๐‘’ if and only if for each ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set a union of members of a family ๐›ฝ.
Definition 2.25[S.H.Hamza and F.M.Majhool,2011]: Let X be a space and A โІ X. The
intersection of all N โˆ’ closed sets of X contained in A is called the N โˆ’ closure of A and is
ฬ…N .
denoted by A
3. On ๐’Š๐’๐’… by using ๐‘ต โˆ’ ๐’๐’‘๐’†๐’ sets
Definition 3.1: The ๐‘ โˆ’small inductive dimension of a space๐‘‹, ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹, is defined
inductively as follows. A space ๐‘‹ satisfies ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = โˆ’1 if and only if ๐‘‹ is empty. If ๐‘› is a
non-negative integer, then ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› means that for each point ๐‘ of ๐‘‹ and each open set ๐บ
such that ๐‘ โˆˆ ๐บ there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ such that ๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1.
We put ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = ๐‘› if it is true that ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, but it is not true that ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› โˆ’ 1.
If there exists no integer ๐‘› for which ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then we put ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = โˆž.
Definition 3.2: The ๐‘ โˆ— โˆ’small inductive dimension of a space๐‘‹, ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹, is defined
inductively as follows. A space ๐‘‹ satisfies ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = โˆ’1 if and only if ๐‘‹ is empty. If ๐‘› is a
non-negative integer, then ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› means that for each point ๐‘ of ๐‘‹ and each ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
set ๐บ such that ๐‘ โˆˆ ๐บ there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ such that ๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค
๐‘› โˆ’ 1. We put ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = ๐‘› if it is true that ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, but it is not true that ๐‘ โˆ— โˆ’
๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› โˆ’ 1. If there exists no integer ๐‘› for which ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then we put ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ =
โˆž.
Proposition 3.3: Let ๐‘‹ be a topological space. If ๐‘–๐‘›๐‘‘๐‘‹ is exists then ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘–๐‘›๐‘‘๐‘‹.
Proof: By induction on ๐‘›. It is clear ๐‘› = โˆ’1. Suppose that it is true for ๐‘› โˆ’ 1. Now suppose that
๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, let ๐‘ โˆˆ ๐‘‹ and ๐บ is an open set in ๐‘‹ such that ๐‘ โˆˆ ๐บ since
๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› , then there exists an open set ๐‘ˆ in ๐‘‹ such that ๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ and ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1 and
since every open set is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set then ๐‘ˆ is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set such that ๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ’
๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. Hence ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›.โˆŽ
Theorem 3.4: Let ๐‘‹ be a topological space, then ๐‘–๐‘›๐‘‘๐‘‹ = 0 if and only if ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0.
Proof: By proposition (3.3). If ๐‘–๐‘›๐‘‘๐‘‹ = 0 then ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค 0, and since ๐‘‹ โ‰  โˆ… then ๐‘ โˆ’
๐‘–๐‘›๐‘‘๐‘‹ = 0.
Now
Let ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0 and Let ๐‘ โˆˆ ๐‘‹ and each open set ๐บ โŠ‚ ๐‘‹ of the point ๐‘, since ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0
then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ โŠ‚ ๐‘‹ such that ๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค โˆ’1. Then
๐‘(๐‘ˆ) = โˆ…, therefore ๐‘ˆ is both open and closed, and thus ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) = โˆ’1. So that ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค 0 and
since ๐‘‹ โ‰  โˆ… then ๐‘–๐‘›๐‘‘๐‘‹ = 0. โˆŽ
Remark 3.5[A.P.Pears ,1975]: Let ๐‘‹ be a topological space with ๐‘–๐‘›๐‘‘๐‘‹ = 0 then ๐‘‹ is a regular
space.
Corollary 3.6: Let ๐‘‹ be a topological space, if ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0 then ๐‘‹ is a regular space.
Remark 3.7[A.P.Pears ,1975]: A space ๐‘‹ satisfies ๐‘–๐‘›๐‘‘๐‘‹ = 0 if and only if it is not empty and
has a base for its topology which consists of open and closed sets.
597
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
Corollary 3.8: A space ๐‘‹ satisfies ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0 if and only if it is not empty and has a base
for its topology which consists of open and closed sets.
Proposition 3.9[A.P.Pears ,1975]: For every sub space ๐ด of a space ๐‘‹, we have ๐‘–๐‘›๐‘‘๐ด โ‰ค ๐‘–๐‘›๐‘‘๐‘‹.
Theorem 3.10: For every sub space ๐ด of a space ๐‘‹ and ๐ด is open, we have
๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐ด โ‰ค ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹
Proof: By induction on ๐‘›. If ๐‘› = โˆ’1 then theorem is true. Suppose that the theorem is true for
๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› to prove ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐ด โ‰ค ๐‘›. Let ๐‘ โˆˆ ๐ด and ๐บ is an open set in ๐ด such
that ๐‘ โˆˆ ๐บ. Since ๐บ is open set in ๐ด then there exists ๐‘ˆ is an open set in ๐‘‹ such that ๐บ = ๐‘ˆ โˆฉ ๐ด.
Since ๐‘ โˆˆ ๐ด and ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘Š in ๐‘‹ such that ๐‘ โˆˆ ๐‘Š โŠ‚ ๐‘ˆ
and ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘Š) โ‰ค ๐‘› โˆ’ 1. Let ๐‘‰ = ๐‘Š โˆฉ ๐ด is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐ด, by proposition(2.7).
Thus ๐‘ โˆˆ ๐‘‰ = ๐‘Šโ‹‚๐ด โŠ‚ ๐‘ˆโ‹‚๐ด = ๐บ to prove ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘๐ด (๐‘‰) โ‰ค ๐‘› โˆ’ 1 ๐‘กโ„Ž๐‘’๐‘› ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐ด โ‰ค ๐‘›.
ฬ… โˆ’ ๐‘‰ โˆ˜ ) โˆฉ ๐ด = (๐‘Š
ฬ… โˆฉ ๐‘‰ โˆ˜โˆ ) โˆฉ ๐ด
๐‘๐ด (๐‘‰) โІ ๐‘(๐‘‰)โ‹‚๐ด = (๐‘‰ฬ… โˆ’ ๐‘‰ โˆ˜ )โ‹‚๐ด โŠ‚ (๐‘Š
ฬ… โˆฉ (๐‘Š โˆ˜โˆ โˆช ๐ดโˆ˜โˆ )] โˆฉ ๐ด = [(๐‘Š
ฬ… โˆฉ ๐‘Š โˆ˜โˆ ) โˆช (๐‘Š
ฬ… โˆฉ ๐ดโˆ˜โˆ )] โˆฉ ๐ด
= [๐‘Š
โˆ
โˆ
โŠ‚ (๐‘(๐‘Š) โˆช ๐ดโˆ˜ ) โˆฉ ๐ด = (๐‘(๐‘Š) โˆฉ ๐ด) โˆช (๐ดโˆ˜ โˆฉ ๐ด) โŠ‚ ๐‘(๐‘Š).
Thus ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘๐ด (๐‘‰) โ‰ค ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘Š). Since ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘Š) โ‰ค ๐‘› โˆ’ 1 then ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘๐ด (๐‘‰) โ‰ค
๐‘› โˆ’ 1 (By induction). Therefore ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐ด โ‰ค ๐‘›. โˆŽ
4. On ๐‘ฐ๐’๐’… by using ๐‘ต โˆ’ ๐’๐’‘๐’†๐’ sets
Definition 4.1: The ๐‘ โˆ’large inductive dimension of a space๐‘‹, ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹, is defined inductively
as follows. A space ๐‘‹ satisfies ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = โˆ’1 if and only if ๐‘‹ is empty. If ๐‘› is a non-negative
integer, then ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› means that for each closed set ๐ธ and each open set ๐บ of ๐‘‹ such that
๐ธ โŠ‚ ๐บ there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ such that ๐ธ โŠ‚ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. We put
๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = ๐‘› if it is true that ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, but it is not true that ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› โˆ’ 1. If there
exists no integer ๐‘› for which ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then we put ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = โˆž.
Definition 4.2: The ๐‘ โˆ— โˆ’large inductive dimension of a space๐‘‹, ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹, is defined
inductively as follows. A space ๐‘‹ satisfies ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = โˆ’1 if and only if ๐‘‹ is empty. If ๐‘› is a
non-negative integer, then ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› means that for each ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set ๐ธ and each open
set ๐บ of ๐‘‹ such that ๐ธ โŠ‚ ๐บ there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ such that ๐ธ โŠ‚ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ— โˆ’
๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. We put ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = ๐‘› if it is true that ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, but it is not true that
๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› โˆ’ 1. If there exists no integer ๐‘› for which ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then we put ๐‘ โˆ— โˆ’
๐ผ๐‘›๐‘‘๐‘‹ = โˆž.
Definition 4.3: The ๐‘ โˆ—โˆ— โˆ’large inductive dimension of a space๐‘‹, ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹, is defined
inductively as follows. A space ๐‘‹ satisfies ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = โˆ’1 if and only if ๐‘‹ is empty. If ๐‘› is a
non-negative integer, then ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› means that for each ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set ๐ธ and each ๐‘ โˆ’
๐‘œ๐‘๐‘’๐‘› set ๐บ of ๐‘‹ such that ๐ธ โŠ‚ ๐บ there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ such that ๐ธ โŠ‚ ๐‘ˆ โŠ‚ ๐บ and
๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. We put ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = ๐‘› if it is true that ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, but it is not
true that ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› โˆ’ 1. If there exists no integer ๐‘› for which ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then we
put ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = โˆž.
Proposition 4.4: Let ๐‘‹ be a topological space, if ๐ผ๐‘›๐‘‘๐‘‹ is exist then ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐ผ๐‘›๐‘‘๐‘‹.
Proof: By induction on ๐‘›. It is clear ๐‘› = โˆ’1. Suppose that it is true for ๐‘› โˆ’ 1. Now suppose that
๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, let ๐ถ be a ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in ๐‘‹ and ๐บ is an open set in ๐‘‹ such
that ๐ถ โŠ‚ ๐บ since ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› , then there exists an open set ๐‘ˆ in ๐‘‹ such that ๐ถ โŠ‚ ๐‘ˆ โŠ‚ ๐บ and
๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1 and since every open set is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set then ๐‘ˆ is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set such that
๐ถ โŠ‚ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. Hence ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›.โˆŽ
598
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
Proposition 4.5: Let ๐‘‹ be a topological space then:
1. If ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ is exist then ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹.
2. If ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ is exist then ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹.
Theorem 4.6: Let ๐‘‹ be a topological space, then ๐ผ๐‘›๐‘‘๐‘‹ = 0 if and only if ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0.
Proof: By proposition (4.5). If ๐ผ๐‘›๐‘‘๐‘‹ = 0 then ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค 0, and since ๐‘‹ โ‰  โˆ… then ๐‘ โˆ’
๐ผ๐‘›๐‘‘๐‘‹ = 0.
Now
Let ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0 and Let ๐น is closed set in ๐‘‹ and each open set ๐บ in ๐‘‹ such that ๐น โŠ‚ ๐‘ˆ. Since
๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0 then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ in ๐‘‹ such that ๐น โŠ‚ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ’
๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) = โˆ’1. Then ๐‘(๐‘ˆ) = โˆ…, therefore ๐‘ˆ is both open and closed, and thus ๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) = โˆ’1.
So that ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค 0 and since ๐‘‹ โ‰  โˆ… then ๐ผ๐‘›๐‘‘๐‘‹ = 0. โˆŽ
Remark 4.7[A.P.Pears ,1975]: Let ๐‘‹ be a topological space with ๐ผ๐‘›๐‘‘๐‘‹ = 0 then ๐‘‹ is a normal
space.
Corollary 4.8: Let ๐‘‹ be a topological space with ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0 then ๐‘‹ is a normal space.
Proof: It follows from theorem (4.6).
Remark 4.9[A.P.Pears ,1975]: A space ๐‘‹ satisfies ๐ผ๐‘›๐‘‘๐‘‹ = 0 if and only if it is non-empty and
has a base for its topology which consist of open and closed sets.
Corollary 4.10: A space ๐‘‹ satisfies ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0 if and only if it is non-empty and has a base
for its topology which consist of open and closed sets.
Proposition 4.11[A.P.Pears ,1975]:Let ๐‘‹ be a topological space, if ๐ด is a closed sub set of a
space ๐‘‹ we have ๐ผ๐‘›๐‘‘๐ด โ‰ค ๐ผ๐‘›๐‘‘๐‘‹.
Theorem 4.12: Let ๐‘‹ be a topological space, if ๐ด is a closed and open sub set of a space ๐‘‹, we
have
๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐ด โ‰ค ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹.
Proof: By induction on ๐‘›. If ๐‘› = โˆ’1 then theorem is true. Suppose that the theorem is true for
๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› to prove ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐ด โ‰ค ๐‘›. Let ๐น is a closed set in ๐ด and ๐บ is an open
set in ๐ด such that ๐น โŠ‚ ๐บ. Since ๐น is a closed set in ๐ด and ๐ด is a closed set in ๐‘‹ then ๐น is a
closed set in ๐‘‹. Since ๐บ is open set in ๐ด then there exists ๐‘ˆ is an open set in ๐‘‹ such that ๐บ =
๐‘ˆ โˆฉ ๐ด. Since ๐น โŠ‚ ๐‘ˆ and ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘Š in ๐‘‹ such that ๐น โŠ‚
๐‘Š โŠ‚ ๐‘ˆ and ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘Š) โ‰ค ๐‘› โˆ’ 1. Let ๐‘‰ = ๐‘Š โˆฉ ๐ด is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐ด, by proposition(2.7).
Thus ๐น โŠ‚ ๐‘‰ = ๐‘Šโ‹‚๐ด โŠ‚ ๐‘ˆโ‹‚๐ด = ๐บ
ฬ… โˆ’ ๐‘‰ โˆ˜ ) โˆฉ ๐ด = (๐‘Š
ฬ… โˆฉ ๐‘‰ โˆ˜โˆ ) โˆฉ ๐ด
๐‘๐ด (๐‘‰) โІ ๐‘(๐‘‰)โ‹‚๐ด = (๐‘‰ฬ… โˆ’ ๐‘‰ โˆ˜ )โ‹‚๐ด โŠ‚ (๐‘Š
ฬ… โˆฉ (๐‘Š โˆ˜โˆ โˆช ๐ดโˆ˜โˆ )] โˆฉ ๐ด = [(๐‘Š
ฬ… โˆฉ ๐‘Š โˆ˜โˆ ) โˆช (๐‘Š
ฬ… โˆฉ ๐ดโˆ˜โˆ )] โˆฉ ๐ด
= [๐‘Š
โˆ
โˆ
โŠ‚ (๐‘(๐‘Š) โˆช ๐ดโˆ˜ ) โˆฉ ๐ด = (๐‘(๐‘Š) โˆฉ ๐ด) โˆช (๐ดโˆ˜ โˆฉ ๐ด) โŠ‚ ๐‘(๐‘Š).
ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
๐‘๐ด (๐‘‰)๐‘(๐‘Š) = ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
๐‘๐ด (๐‘‰) โˆฉ ๐‘(๐‘Š) = ๐‘๐ด (๐‘‰) โˆฉ ๐‘(๐‘Š) = ๐‘๐ด (๐‘‰). ๐‘๐ด (๐‘‰) is closed set in ๐ด, since ๐ด is a
closed set in ๐‘‹ then ๐‘๐ด (๐‘‰) is a closed set in ๐‘(๐‘Š). Thus ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘๐ด (๐‘‰) โ‰ค ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘Š).
Since ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘Š) โ‰ค ๐‘› โˆ’ 1 then ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘๐ด (๐‘‰) โ‰ค ๐‘› โˆ’ 1 (By induction). Therefore ๐‘ โˆ’
๐‘–๐‘›๐‘‘๐ด โ‰ค ๐‘›. โˆŽ
5. On ๐’…๐’Š๐’Ž by using ๐‘ต โˆ’ ๐’๐’‘๐’†๐’ sets
Definition 5.1: The ๐‘ โˆ’covering dimension ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ of a topological space ๐‘‹ is the least
integer ๐‘› such that every finite open covering of ๐‘‹ has an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of order not
599
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
exceeding ๐‘› or is โˆž if there is no such integer. Thus ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = โˆ’1 if and only if ๐‘‹ is empty,
and ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› if each finite open covering of ๐‘‹ has ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of order not
exceeding ๐‘›. We have ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = ๐‘› if it is true that๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› but it is not true that ๐‘ โˆ’
๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› โˆ’ 1. Finally ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = โˆž if for every integer ๐‘› it is false that ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘›.
Definition 5.2: The ๐‘ โˆ— โˆ’covering dimension ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ of a topological space ๐‘‹ is the least
integer ๐‘› such that every finite ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› covering of ๐‘‹ has an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of order
not exceeding ๐‘› or is โˆž if there is no such integer. Thus ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = โˆ’1 if and only if ๐‘‹ is
empty, and ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› if each finite ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› covering of ๐‘‹ has ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of
order not exceeding ๐‘›. We have ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = ๐‘› if it is true that๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› but it is not
true that ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› โˆ’ 1. Finally ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = โˆž if for every integer ๐‘› it is false that
๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘›.
Proposition 5.3: Let ๐‘‹ be a topological space, if ๐‘‘๐‘–๐‘š๐‘‹ is exists then
๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘‘๐‘–๐‘š๐‘‹
Proof: By induction on ๐‘›. If ๐‘› = โˆ’1 then ๐‘‘๐‘–๐‘š๐‘‹ = โˆ’1 and ๐‘‹ = โˆ…, so that ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = โˆ’1.
Suppose statement is true for ๐‘› โˆ’ 1, now let ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› to prove ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘›.
Let ๐’ฐ = {๐‘ˆ1 , ๐‘ˆ2 , โ€ฆ , ๐‘ˆ๐‘˜ } be a finite open cover of ๐‘‹. Since ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› then ๐’ฐ has ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
refinement ๐’ฑ of ๐‘œ๐‘Ÿ๐‘‘๐‘’๐‘Ÿ โ‰ค ๐‘›. Hence ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘›.
Proposition 5.4: Let ๐‘‹ be a topological space, if ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ is exists then
๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹
Theorem 5.5: Let ๐‘‹ be a topological space, if ๐‘‹ has a base of sets which are both ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and
๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ then ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0, for a ๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ the converse is true.
Proof: Suppose ๐‘‹ has a base of sets which are both ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘. Let {๐‘ˆ๐‘– }๐พ
๐‘–=1 be a
finite open cover of ๐‘‹, it has an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement ๐‘Š, if ๐‘ค โˆˆ ๐‘Š then ๐‘Š โŠ‚ ๐‘ˆ๐‘– for some ๐‘–.
Let each ๐‘ค ๐‘–๐‘› ๐‘Š be associated with one of the sets ๐‘ˆ๐‘– containing it and let ๐‘‰๐‘– be the union of
those members of ๐‘Š thus associated with ๐‘ˆ๐‘– . Thus ๐‘‰๐‘– is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set and hence {๐‘‰๐‘– }๐พ
๐‘–=1 forms
disjoint ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of {๐‘ˆ๐‘– }๐พ
then
๐‘
โˆ’
๐‘‘๐‘–๐‘š๐‘‹
=
0.
๐‘–=1
Conversely
Suppose ๐‘‹ is ๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’such that ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0. Let ๐‘ โˆˆ ๐‘‹ and ๐บ be an open set in ๐‘‹ such
that ๐‘ โˆˆ ๐บ. Then {๐‘} is closed set and {๐บ, ๐‘‹ โˆ’ {๐‘}} is finite open cover of ๐‘‹ so it has an ๐‘ โˆ’
๐‘œ๐‘๐‘’๐‘› refinement of order 0. Let ๐ถ1 be the union of ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets in ๐บ and ๐ถ2 be the union of
the ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets in ๐‘‹ โˆ’ {๐‘}. Then ๐ถ1 โˆฉ ๐ถ2 = โˆ… , ๐ถ1 โˆช ๐ถ2 = ๐‘‹ and ๐ถ1 , ๐ถ2 are ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets
and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets in ๐‘‹. Thus ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in ๐‘‹ and hence ๐‘‹ has a base of sets which are
both ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets. โˆŽ
Theorem 5.6: Let ๐‘‹ be a topological space, if ๐‘‹ has ๐‘ โˆ’ ๐‘๐‘Ž๐‘ ๐‘’ of sets which are both ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ then ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0, for a ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ the converse is true.
Proof: Suppose ๐‘‹ has ๐‘ โˆ’ ๐‘๐‘Ž๐‘ ๐‘’ of sets which are both ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘. Let {๐‘ˆ๐‘– }๐พ
๐‘–=1
be a finite ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› cover of ๐‘‹, it has an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement ๐‘Š, if ๐‘ค โˆˆ ๐‘Š then ๐‘Š โŠ‚ ๐‘ˆ๐‘– for
some ๐‘–. Let each ๐‘ค ๐‘–๐‘› ๐‘Š be associated with one of the sets ๐‘ˆ๐‘– containing it and let ๐‘‰๐‘– be the
union of those members of ๐‘Š thus associated with ๐‘ˆ๐‘– . Thus ๐‘‰๐‘– is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set and hence
๐พ
โˆ—
{๐‘‰๐‘– }๐พ
๐‘–=1 forms disjoint ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of {๐‘ˆ๐‘– }๐‘–=1 then ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0.
Conversely
Suppose ๐‘‹ is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ such that ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0. Let ๐‘ โˆˆ ๐‘‹ and ๐บ be an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set in ๐‘‹
such that ๐‘ โˆˆ ๐บ. Then {๐‘} is closed set and {๐บ, ๐‘‹ โˆ’ {๐‘}} is finite ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› cover of ๐‘‹.
600
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
Since ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0 then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement {๐‘‰, ๐‘Š} of order 0. Such that
๐‘‰ โˆฉ ๐‘Š = โˆ… , โˆช ๐‘Š = ๐‘‹ , ๐‘‰ โŠ‚ ๐บ and ๐‘Š โŠ‚ ๐‘‹ โˆ’ {๐‘}. Then ๐‘‰ is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in
๐‘‹ such that ๐‘ โˆˆ ๐‘Š โˆ โˆˆ ๐‘‰ โŠ‚ ๐บ and hence ๐‘‹ has ๐‘ โˆ’ ๐‘๐‘Ž๐‘ ๐‘’ of ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets. โˆŽ
Remark 5.7[A.P.Pears ,1975]: Let ๐‘‹ be a topological space with ๐‘‘๐‘–๐‘š๐‘‹ = 0 then ๐‘‹ is a normal
space.
Theorem 5.8: Let ๐‘‹ be a topological space with ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0 then ๐‘‹ is ๐‘ โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ space.
Proof: Let ๐น1 and ๐น2 be disjoint closed sets of ๐‘‹, then {๐‘‹ โˆ– ๐น2 , ๐‘‹ โˆ– ๐น1 } is an open covering of ๐‘‹.
Since ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0 then it has ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of order 0, hence there exist ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
sets ๐ป and ๐บ such that ๐ป โˆฉ ๐บ = โˆ… , โˆช ๐บ = ๐‘‹ , ๐ป โŠ‚ ๐‘‹ โˆ– ๐น1 and ๐บ โŠ‚ ๐‘‹ โˆ– ๐น2 . Thus ๐น1 โІ ๐ป โˆ =
๐บ , ๐น2 โІ ๐บ โˆ = ๐ป and since ๐ป โˆฉ ๐บ = โˆ… then ๐‘‹ is ๐‘ โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘ ๐‘๐‘Ž๐‘๐‘’. โˆŽ
Theorem 5.9: Let ๐‘‹ be a topological space with ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0 then ๐‘‹ is ๐‘ โˆ—โˆ— โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™
space.
Proof: Let ๐น1 and ๐น2 be disjoint ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets of ๐‘‹, then {๐‘‹ โˆ– ๐น2 , ๐‘‹ โˆ– ๐น1 } is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
covering of ๐‘‹. Since ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0 then it has ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of order 0, hence there
exist ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets ๐ป and ๐บ such that ๐ป โˆฉ ๐บ = โˆ… , โˆช ๐บ = ๐‘‹ , ๐ป โŠ‚ ๐‘‹ โˆ– ๐น1 and ๐บ โŠ‚ ๐‘‹ โˆ– ๐น2 .
Thus ๐น1 โІ ๐ป โˆ = ๐บ , ๐น2 โІ ๐บ โˆ = ๐ป and since ๐ป โˆฉ ๐บ = โˆ… then ๐‘‹ is ๐‘ โˆ—โˆ— โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘ ๐‘๐‘Ž๐‘๐‘’. โˆŽ
Remark 5.10: Let ๐‘‹ = {๐‘Ž, ๐‘, ๐‘} , ๐‘‡ = {โˆ…, ๐‘‹, {๐‘Ž}, {๐‘}, {๐‘Ž, ๐‘}}.In example show that ๐‘‘๐‘–๐‘š๐‘‹ = ๐‘ โˆ’
๐‘‘๐‘–๐‘š๐‘‹ = 0. Since ๐‘‹ is the open cover of ๐‘‹ and its only refinement of it. Then ๐‘‘๐‘–๐‘š๐‘‹ = 0 and
since ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘‘๐‘–๐‘š๐‘‹ , ๐‘‹ โ‰  โˆ… then ๐‘‘๐‘–๐‘š๐‘‹ = ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0.
Proposition 5.11[A.P.Pears ,1975]: Let ๐‘‹ be a topological space, if ๐ด is a closed sub set of a
space ๐‘‹ we have ๐‘‘๐‘–๐‘š๐ด โ‰ค ๐‘‘๐‘–๐‘š๐‘‹.
Theorem 5.12: Let ๐‘‹ be a topological space, if ๐ด is a closed and open sub set of a space ๐‘‹, we
have
๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐ด โ‰ค ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹
Proof: Suppose that ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› to prove ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐ด โ‰ค ๐‘›. Let {๐‘ˆ1 , ๐‘ˆ2 , โ€ฆ , ๐‘ˆ๐‘˜ } be an open
covering of ๐ด. Then for each ๐‘–, ๐‘ˆ๐‘– = ๐ดโ‹‚๐‘‰๐‘– , where ๐‘‰๐‘– is open set in ๐‘‹.
The finite open covering {๐‘‰1 , ๐‘‰2 , โ€ฆ , ๐‘‰๐‘˜ , ๐‘‹ โˆ– ๐ด} of ๐‘‹ has an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement ๐‘Š of order โ‰ค ๐‘›.
Let ๐‘‰ = {๐‘ค โˆฉ ๐ด: ๐‘ค โˆˆ ๐‘Š} where ๐‘ค โˆฉ ๐ด is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐ด by proposition(2.7).
Then ๐‘‰ is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of {๐‘ˆ1 , ๐‘ˆ2 , โ€ฆ , ๐‘ˆ๐‘˜ } of orderโ‰ค ๐‘›. Thus ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐ด โ‰ค ๐‘›. โˆŽ
Theorem 5.13: Let ๐‘‹ be a topological space, if ๐ด is a closed and open sub set of a space ๐‘‹, we
have
๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐ด โ‰ค ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹
โˆ—
Proof: Suppose that ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› to prove ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐ด โ‰ค ๐‘›. Let {๐‘ˆ1 , ๐‘ˆ2 , โ€ฆ , ๐‘ˆ๐‘˜ } be an ๐‘ โˆ’
๐‘œ๐‘๐‘’๐‘› covering of ๐ด. Then for each ๐‘–, ๐‘ˆ๐‘– = ๐ดโ‹‚๐‘‰๐‘– , where ๐‘‰๐‘– is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set in ๐‘‹.
The finite ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› covering {๐‘‰1 , ๐‘‰2 , โ€ฆ , ๐‘‰๐‘˜ , ๐‘‹ โˆ– ๐ด} of ๐‘‹ has an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement ๐‘Š of
order โ‰ค ๐‘›. Let ๐‘‰ = {๐‘ค โˆฉ ๐ด: ๐‘ค โˆˆ ๐‘Š} where ๐‘ค โˆฉ ๐ด is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐ด. Then ๐‘‰ is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
refinement of {๐‘ˆ1 , ๐‘ˆ2 , โ€ฆ , ๐‘ˆ๐‘˜ } of orderโ‰ค ๐‘›. Thus ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐ด โ‰ค ๐‘›. โˆŽ
6. Relation between the dimensions ๐’Š๐’๐’… ๐’‚๐’๐’… ๐‘ฐ๐’๐’… by using ๐‘ต โˆ’ ๐’๐’‘๐’†๐’ sets
Proposition 6.1: Let ๐‘‹ be a topological space, if ๐‘‹ is ๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ then
๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹
Proof: By induction on n. If ๐‘› = โˆ’1 then the statement is true. Suppose that the statement is true
for ๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. Let ๐‘ โˆˆ ๐‘‹ and each open set ๐บ โŠ‚ ๐‘‹ of the
point ๐‘, since ๐‘‹ is ๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ then {๐‘} โІ ๐บ such that {๐‘} is closed set. Since ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›
601
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘‰ in ๐‘‹ such that ๐‘ โŠ‚ ๐‘‰ โŠ‚ ๐บ and ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘‰) โ‰ค ๐‘› โˆ’ 1.
Hence ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘‰) โ‰ค ๐‘› โˆ’ 1 and ๐‘ โˆˆ ๐‘‰ โŠ‚ ๐บ. Then ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. โˆŽ
Proposition 6.2: Let ๐‘‹ be a topological space, if ๐‘‹ is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ then
๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹
Proof: By induction on n. If ๐‘› = โˆ’1 then the statement is true. Suppose that the statement is true
for ๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. Let ๐‘ โˆˆ ๐‘‹ and each open set ๐บ โŠ‚ ๐‘‹ of
the point ๐‘, since ๐‘‹ is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ then {๐‘} โІ ๐บ such that {๐‘} is ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set. Since ๐‘ โˆ— โˆ’
๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘‰ in ๐‘‹ such that ๐‘ โŠ‚ ๐‘‰ โŠ‚ ๐บ and ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘‰) โ‰ค
๐‘› โˆ’ 1. Hence ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘‰) โ‰ค ๐‘› โˆ’ 1 and ๐‘ โˆˆ ๐‘‰ โŠ‚ ๐บ. Then ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. โˆŽ
Proposition 6.3: Let ๐‘‹ be a topological space, if ๐‘‹ is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ then
๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹
Proof: By induction on n. If ๐‘› = โˆ’1 then the statement is true. Suppose that the statement is true
for ๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. Let ๐‘ โˆˆ ๐‘‹ and each ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐บ โŠ‚
๐‘‹ of the point ๐‘, since ๐‘‹ is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ then {๐‘} โІ ๐บ such that {๐‘} is ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set.
Since ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘‰ in ๐‘‹ such that ๐‘ โŠ‚ ๐‘‰ โŠ‚ ๐บ and
๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘‰) โ‰ค ๐‘› โˆ’ 1. Hence ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘‰) โ‰ค ๐‘› โˆ’ 1 and ๐‘ โˆˆ ๐‘‰ โŠ‚ ๐บ. Then ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค
๐‘›. โˆŽ
Proposition 6.4: Let ๐‘‹ be a topological space, if ๐‘‹ is a regular space then
๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹
Proof: By induction on n. If ๐‘› = โˆ’1 then the statement is true. Suppose that the statement is true
for ๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. Let ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› and let ๐‘ โˆˆ ๐‘‹ and each
open set ๐บ โŠ‚ ๐‘‹ of the point ๐‘, since ๐‘‹ is a regular space then there exists an ๐‘œ๐‘๐‘’๐‘› set ๐‘‰ in ๐‘‹
such that๐‘ โˆˆ ๐‘‰ โŠ‚ ๐‘‰ฬ… โŠ‚ ๐บ.
Also.. Since ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› and ๐‘‰ฬ… is closed, ๐‘‰ฬ… โŠ‚ ๐บ then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ in ๐‘‹
such that ๐‘‰ฬ… โŠ‚ ๐‘ˆ โŠ‚ ๐บ and๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. Hence ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1 and ๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ
(by induction). Therefore ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. โˆŽ
Proposition 6.5: Let ๐‘‹ be a topological space, if ๐‘‹ is a ๐‘ โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space then
๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹
Proof: By induction on n. If ๐‘› = โˆ’1 then the statement is true. Suppose that the statement is true
for ๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. Let ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› and let ๐‘ โˆˆ ๐‘‹ and
each open set ๐บ โŠ‚ ๐‘‹ of the point ๐‘, since ๐‘‹ is ๐‘ โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
set ๐‘‰ in ๐‘‹ such that๐‘ โˆˆ ๐‘‰ โŠ‚ ๐‘‰ฬ… ๐‘ โŠ‚ ๐บ.
Also.. Since ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› and ๐‘‰ฬ… ๐‘ is ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ , ๐‘‰ฬ… ๐‘ โŠ‚ ๐บ then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set
๐‘ˆ in ๐‘‹ such that ๐‘‰ฬ… ๐‘ โŠ‚ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. Hence ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1 and
๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ (by induction). Therefore ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. โˆŽ
Proposition 6.6: Let ๐‘‹ be a topological space, if ๐‘‹ is a ๐‘ โˆ— โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space then
๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹
602
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
Proof: By induction on n. If ๐‘› = โˆ’1 then the statement is true. Suppose that the statement is true
for ๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. Let ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› and let ๐‘ โˆˆ ๐‘‹ and
each ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐บ โŠ‚ ๐‘‹ of the point ๐‘, since ๐‘‹ is ๐‘ โˆ— โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space then there exists an
๐‘œ๐‘๐‘’๐‘› set ๐‘‰ in ๐‘‹ such that ๐‘ โˆˆ ๐‘‰ โŠ‚ ๐‘‰ฬ… ๐‘ โŠ‚ ๐บ.
Also.. Since ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› and ๐‘‰ฬ… ๐‘ is โˆ’๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ , ๐‘‰ฬ… ๐‘ โŠ‚ ๐บ then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set
๐‘ˆ in ๐‘‹ such that ๐‘‰ฬ… ๐‘ โŠ‚ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. Hence ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1 and
๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ (by induction). Therefore ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. โˆŽ
Theorem 6.7: Let ๐‘‹ be a topological space, if ๐‘‹ is a compact space and ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0 then
๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0.
Proof: Let ๐‘‹ is compact space such that๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0.
Let ๐น be a closed set of ๐‘‹ and ๐บ be an open set of ๐‘‹ such that ๐น โŠ‚ ๐บ.
Since๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0, for each ๐‘ โˆˆ ๐น there exist an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets ๐‘ˆ๐‘ such that
๐‘ โˆˆ ๐‘ˆ๐‘ โŠ‚ ๐บ hence๐น โŠ‚ โ‹ƒ๐‘โˆˆ๐น ๐‘ˆ๐‘ โŠ‚ ๐บ.
Since ๐น be a closed set in the compact space๐‘‹, ๐น is compact , hence there exist points
๐‘1 , ๐‘2 , โ€ฆ . . , ๐‘๐‘˜ of ๐น such that๐น โŠ‚ โ‹ƒ๐‘˜๐‘–=1 ๐‘ˆ๐‘๐‘– โŠ‚ ๐บ. Since โ‹ƒ๐‘˜๐‘–=1 ๐‘ˆ๐‘๐‘– is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ of
๐‘‹. It following that ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0. โˆŽ
Theorem 6.8: Let ๐‘‹ be a topological space, if ๐‘‹ is a ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space and ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0
then ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0.
Proof: Let ๐‘‹ be ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space such that๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0.
Let ๐น be an ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set of ๐‘‹ and ๐บ be an open set of ๐‘‹ such that ๐น โŠ‚ ๐บ.
Since๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0, for each ๐‘ โˆˆ ๐น there exist an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets ๐‘ˆ๐‘ such that
๐‘ โˆˆ ๐‘ˆ๐‘ โŠ‚ ๐บ hence๐น โŠ‚ โ‹ƒ๐‘โˆˆ๐น ๐‘ˆ๐‘ โŠ‚ ๐บ.
Since ๐น be an ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in the ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space๐‘‹, ๐น is ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space, hence
there exist points ๐‘1 , ๐‘2 , โ€ฆ . . , ๐‘๐‘˜ of ๐น such that๐น โŠ‚ โ‹ƒ๐‘˜๐‘–=1 ๐‘ˆ๐‘๐‘– โŠ‚ ๐บ. Since โ‹ƒ๐‘˜๐‘–=1 ๐‘ˆ๐‘๐‘– is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ of ๐‘‹. It following that ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0. โˆŽ
Theorem 6.9: Let ๐‘‹ be a topological space, if ๐‘‹ is a ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space and ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0
then ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0.
Proof: Let ๐‘‹ be ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space such that ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0.
Let ๐น be an ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set of ๐‘‹ and ๐บ be an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set of ๐‘‹ such that ๐น โŠ‚ ๐บ.
Since๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0, for each ๐‘ โˆˆ ๐น there exist an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets ๐‘ˆ๐‘ such that
๐‘ โˆˆ ๐‘ˆ๐‘ โŠ‚ ๐บ hence๐น โŠ‚ โ‹ƒ๐‘โˆˆ๐น ๐‘ˆ๐‘ โŠ‚ ๐บ.
Since ๐น be an ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in the ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space๐‘‹, ๐น is ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space, hence
there exist points ๐‘1 , ๐‘2 , โ€ฆ . . , ๐‘๐‘˜ of ๐น such that๐น โŠ‚ โ‹ƒ๐‘˜๐‘–=1 ๐‘ˆ๐‘๐‘– โŠ‚ ๐บ. Since โ‹ƒ๐‘˜๐‘–=1 ๐‘ˆ๐‘๐‘– is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ of ๐‘‹. It following that ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0. โˆŽ
References
AL-Omari, A. and M.S.Md.Noorani, 2009 โ€New characterizations of compact spacesโ€,
proceedings of 5๐‘กโ„Ž Asian Mathematical conference, Malaysia.
Atallah Themer AL-Ani, 1974 โ€œOn compactifiction, mapping and dimension
theoryโ€,Ph.D.Dissertation university of London, Queen Elizabeth college.
603
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
Burbaki, N. 1989 โ€œElements of Mathematics; General Topologyโ€ Springer verlag , Berlin,
Hedelberg, New York, London, Paris, Tokyo, 2๐‘›๐‘‘ Edition. college of mathematics and
computer science.
Gemignani, M.C. 1967.โ€œElementary Topologyโ€, Reading, Mass: Addison- Wwsley Puplishing
Co.Inc. .
Hamza S.H. and F.M.Majhool, 2011 โ€On ๐‘ โˆ’ ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ ๐ด๐‘๐‘ก๐‘–๐‘œ๐‘›โ€,M.Sc., thesis university of ALQadisiya.
Hashmiya Ibrahim Nasser, 2012 โ€œOn some topological spaces by using ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› setโ€ M.Sc.
thesis university of AL-Qadisiya, college of mathematics and computer science.
Maheshwari, S.N.and Thakur,S.S. , 1985โ€On ๐›ผ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก ๐‘ ๐‘๐‘Ž๐‘๐‘’โ€, Bulletin of the Institute of
Mathematics, Academia sinica, Vol.13, No.4, Dec. 1985,341-347.
Navalagi, G.B. , 1991 โ€œDefintion Bank in General topologyโ€, (54) G .
Nedaa Hasan Hajee, 2011 โ€œOn Dimension Theorey By using Feebly open setโ€, M.Sc. thesis
university of AL-Qadisiya, college of mathematics and computer science.
Pears, A.P. 1975โ€œOn Dimension Theory of General Spacesโ€ Cambridge university press.
Pervin, N.J. 1964 โ€œFoundation of General Topologyโ€, Acadmic press, New York.
Raad Aziz Hussain AL-Abdulla, 1992 โ€œOn Dimension Theoryโ€, M.Sc. thesis university of
Baghdad, college of science.
Ryzard Engelking , 1989 โ€œGeneral topoplogyโ€, Berlin Heldermann.
Ryzard Engelking, 1978 โ€œDimension Theoryโ€.
Sama Kadhim Gaber , 2010 โ€œOn b-Dimension Theoryโ€, M.Sc. thesis university of AL-Qadisiya,
604