Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 On Dimension Theory by Using ๐ต โ ๐ถ๐๐๐ Sets Enas Ridha Ali Raad Aziz Hussain College of Computer science and Mathematics University of AL-Qadisiya [email protected] [email protected] Abstract In this paper we discuss new type of dimension theory by using ๐ โ ๐๐๐๐ sets. We the concept of ๐๐๐๐, ๐ผ๐๐๐, ๐๐๐๐, for a topological space ๐ have been studied. In this work, these concepts will be extended by using ๐ โ ๐๐๐๐ sets. Key words: ๐๐๐๐, ๐ผ๐๐๐, ๐๐๐๐, โซุงูุฎุงูุตุฉโฌ ๐๐๐๐, ๐ผ๐๐๐, ๐๐๐๐, โซูู ูุฐุง ุงูุจุญุซ ููุงูุด ููุน ุฌุฏูุฏ ููุธุฑูุฉ ุงูุจุนุฏ ุจุฃุณุชุฎุฏุงู ุงูู ุฌู ูุนุงุช ุงูู ูุชูุญุฉ ู ู ุงููู ุท๐ ููุฏ ุฏุฑุณูุง ุงูู ูุงููู โฌ ๐ โซูููุถุงุกุงุช ุงูุชุจูููุฌูุฉ ๐ูู ูุฐุง ุงูุนู ู ุณูู ููุณุน ูุฐู ุงูู ูุงููู ุจุฃุณุชุฎุฏุงู ุงูู ุฌู ูุนุงุช ุงูู ูุชูุญุฉ ู ู ุงููู ุทโฌ. ๐๐๐๐, ๐ผ๐๐๐, ๐๐๐๐ : โซุงูููู ุงุช ุงูู ูุชุงุญูุฉโฌ 1. Introduction Dimension theory starts with โdimension functionโ which is a function defined on the class of topological spaces such that ๐(๐) is an integer orโ, with the properties that ๐(๐) = ๐(๐) if ๐ and ๐ are homeomorphism and ๐(๐ ๐ ) = ๐ for each positive integer ๐. The dimension functions taking topological spaces to the set{โ1,0,1, โฆ }. The dimension functions ๐๐๐, ๐ผ๐๐, ๐๐๐, were investigated by [Pears ,1975]. Actually the dimension functions, ๐ โ ๐๐๐๐, ๐ โ ๐ผ๐๐๐, ๐ โ ๐๐๐๐ by using ๐ โ ๐๐๐๐ sets were studied in [Raad Aziz Hussain ALAbdulla,1992], also the dimension functions, ๐ โ ๐๐๐๐, ๐ โ ๐ผ๐๐๐, ๐ โ ๐๐๐๐, by using ๐ โ ๐๐๐๐ sets were studied in [Sama Kadhim Gabar,2010], and the dimension functions, ๐ โ ๐๐๐๐, ๐ โ ๐ผ๐๐๐, ๐ โ ๐๐๐๐, by using ๐ โ ๐๐๐๐ sets were studied in [Nedaa Hasan Hajee ,2011]. In this paper we recall the definitions of ind, Ind, dim, from [Pears ,1975], then the dimension functions, ๐ โ ๐๐๐, ๐ โ ๐ผ๐๐, ๐ โ ๐๐๐ are introduced by using ๐ โ ๐๐๐๐ sets. Finally some relations between them are studied and some results relating these concepts are proved. 2. Preliminaries In this section, we recall some of the basic definitions. Definition 2.1[Omari, and Noorani,2009]: A sub set ๐ด of a space ๐ is said to be an ๐ โ ๐๐๐๐ if for every ๐ โ ๐ด there exist an open sub set ๐๐ in ๐ such that ๐๐ โ ๐ด is a finite set. The complement of an ๐ โ ๐๐๐๐ set is said to be ๐ โ ๐๐๐๐ ๐๐. Remark 2.2: 1. Every open set is an ๐ โ ๐๐๐๐ set. 2. Every closed set is an ๐ โ ๐๐๐๐ ๐๐ set. The converse of (1) and (2) is not true in general as the following example shows: Let ๐ be the set of integer numbers and ๐ be indiscrete topology on ๐, then ๐ โ {2,3} is an ๐ โ ๐๐๐๐ set, but its not an open set and ๐ต = {2,3} is an ๐ โ ๐๐๐๐ ๐๐ set, but not a closed set. Remark 2.3: The family of all ๐ โ ๐๐๐๐ sub set of a space (๐, ๐) is denoted by ๐ ๐ . Theorem 2.4[Omari, and Noorani,2009]: Let ๐ be a topological space, then ๐ with the set of all ๐ โ ๐๐๐๐ sub set of ๐ is a topological space. Corollary 2.5[Omari, and Noorani,2009]: Let ๐ be a topological space, then the intersection of an open set and an ๐ โ ๐๐๐๐ set is an ๐ โ ๐๐๐๐ set. 595 Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 Remark 2.6[Hamza and Majhool,2011]: Let ๐ be a space and ๐ be a sub space of ๐ such that๐ด โ ๐, if ๐ด is ๐ โ ๐๐๐๐ sub set in ๐ then ๐ด is ๐ โ ๐๐๐๐ in ๐. Proposition 2.7[Hamza and Majhool,2011]: 1. Let ๐ be a space and ๐ be an ๐ โ ๐๐๐๐ of ๐, if ๐ด is ๐ โ ๐๐๐๐ in ๐ then ๐ด is an ๐ โ ๐๐๐๐ in ๐. 2. Let ๐ be a space and ๐ be a sub set of ๐ if ๐ต is an ๐ โ ๐๐๐๐ in ๐ then ๐ต โฉ ๐ is ๐ โ ๐๐๐๐ in๐. Definition 2.8[Hashmiya Ibrahim Nasser,2012]: A space ๐ is called ๐๐1 โ ๐ ๐๐๐๐ if and only if for each ๐ฅ โ ๐ฆ in๐, there exists disjoint ๐ โ ๐๐๐๐ sets ๐ and ๐ such that ๐ฅ โ ๐, ๐ฆ โ ๐ ๐๐๐ ๐ฆ โ ๐, ๐ฅ โ ๐. Remark 2.9: It is clear that every ๐1 โ ๐ ๐๐๐๐ is ๐๐1 โ ๐ ๐๐๐๐ but the converse is not true in general, as the following example shows: Let ๐ = {1,2,3}, ๐ = {๐, โ , {1}, {2}, {1,2}}, the ๐ โ ๐๐๐๐ set is {๐, โ , {1}, {2}, {3}, {1,2}, {1,3}, {2,3}}, It is clear to see that ๐ is ๐๐1 โ ๐ ๐๐๐๐ but is not ๐1 โ ๐ ๐๐๐๐. Proposition 2.10[Hashmiya Ibrahim Nasser,2012]: Let ๐ be a topological space, and then ๐ is ๐๐1 โ ๐ ๐๐๐๐ if and only if {๐} is ๐ โ ๐๐๐๐ ๐๐ set for each ๐ โ ๐. Definition 2.11[Hashmiya Ibrahim Nasser,2012]: A space ๐ is called ๐ โ ๐ป๐๐ข๐ ๐๐๐๐๐ if and only if any two distinct points of ๐ has disjoint an ๐ โ ๐๐๐๐ neighborhoods. Remark 2.12: Every ๐ป๐๐ข๐ ๐๐๐๐๐ space is ๐ โ ๐ป๐๐ข๐ ๐๐๐๐๐. But the convers is not true in general. Definition 2.13: A space ๐ is said to be ๐ โ ๐๐๐๐ข๐๐๐ space if and only if for each ๐ โ ๐ and ๐ถ closed sub set such that๐ โ ๐ถ, there exist disjoint ๐ โ ๐๐๐๐ sets ๐, ๐ in ๐ such that ๐ โ ๐, ๐ถ โ ๐. Definition 2.14: A space ๐ is said to be ๐ โ โ ๐๐๐๐ข๐๐๐ space if and only if for each ๐ โ ๐ and ๐ถ ๐ โ ๐๐๐๐ ๐๐ sub set such that๐ โ ๐ถ, there exist disjoint ๐๐๐๐ sets ๐, ๐ in ๐ such that ๐ open set, ๐ is an ๐ โ ๐๐๐๐ set and ๐ โ ๐, ๐ถ โ ๐. Remark 2.15: 1. Every regular space is ๐ โ ๐๐๐๐ข๐๐๐ space but the convers is not true. 2. Every ๐ โ โ ๐๐๐๐ข๐๐๐ space is ๐ โ ๐๐๐๐ข๐๐๐ space but the convers is not true. As the following example shows: let ๐ = {1,2,3}, ๐ = {๐, โ , {1}, {2}, {1,2}}, the ๐ โ ๐๐๐๐ set is {๐, โ , {1}, {2}, {3}, {1,2}, {1,3}, {2,3}}, It is clear to see that ๐ is ๐ โ ๐๐๐๐ข๐๐๐ space, but ๐ is not regular since {2,3} is closed set, 1 โ {2,3} and there exist no disjoint two open set ๐, ๐ such that 1 โ ๐, {2,3} โ ๐. Also ๐ is not ๐ โ โ ๐๐๐๐ข๐๐๐, since {1,2} is ๐ โ ๐๐๐๐ ๐๐ set and 3 โ {1,2}, but there exist no disjoint open set ๐ and ๐ โ ๐๐๐๐ set ๐ such that 3 โ ๐, {1,2} โ ๐. Definition 2.16: A space ๐ is said to be ๐ โ ๐๐๐๐๐๐ space if and only if for every disjoint closed sets ๐ถ1 , ๐ถ2 there exist disjoint ๐ โ ๐๐๐๐ sets ๐1 , ๐2 such that ๐ถ1 โ ๐1 , ๐ถ2 โ ๐2 . Definition 2.17: A space ๐ is said to be ๐ โ โ ๐๐๐๐๐๐ space if and only if for every disjoint ๐ โ ๐๐๐๐ ๐๐ sets ๐ถ1 , ๐ถ2 there exist disjoint ๐๐๐๐ sets ๐1 , ๐2 such that ๐ถ1 โ ๐1 , ๐ถ2 โ ๐2 . Definition 2.18: A space ๐ is said to be ๐ โโ โ ๐๐๐๐๐๐ space if and only if for every disjoint ๐ โ ๐๐๐๐ ๐๐ sets ๐ถ1 , ๐ถ2 there exist disjoint ๐ โ ๐๐๐๐ sets ๐1 , ๐2 such that ๐ถ1 โ ๐1 , ๐ถ2 โ ๐2 . Remark 2.19: 1. Every normal space is ๐ โ ๐๐๐๐๐๐ but the convers is not true. 2. Every ๐ โ โ ๐๐๐๐๐๐ space is normal but the convers is not true. Definition 2.20[N.Burbaki,1989]: A topological space ๐ is said to be compact if every open cover of ๐ has a finite sub cover. Definition 2.21[S.H.Hamza and F.M.Majhool,2011]: A topological space ๐ is said to be ๐ โ ๐๐๐๐๐๐๐ก if every ๐ โ ๐๐๐๐ cover of ๐ has a finite sub cover. 596 Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 Lemma 2.22[ Maheshwari, S.N.and Thakur,S.S., 1985]: 1. Every closed sub set of compact is compact. 2. Every ๐ โ ๐๐๐๐ ๐๐ sub set of ๐ โ ๐๐๐๐๐๐๐ก is compact. Definition 2.23: Let ๐ be a set and ๐ด a family of sub sets of ๐, by the order of the family ๐ด we mean the largest integer ๐ such that the family ๐ด contains ๐ + 1 sets with a non-empty intersection, if no such integer exists, we say that the family ๐ด has order โ. The order of a family ๐ด is denoted by ord ๐ด. Definition 2.24: Let ๐ be a topological space the family ๐ฝ of ๐ โ ๐๐๐๐ sets is called a ๐ โ ๐๐๐ ๐ if and only if for each ๐ โ ๐๐๐๐ set a union of members of a family ๐ฝ. Definition 2.25[S.H.Hamza and F.M.Majhool,2011]: Let X be a space and A โ X. The intersection of all N โ closed sets of X contained in A is called the N โ closure of A and is ฬ N . denoted by A 3. On ๐๐๐ by using ๐ต โ ๐๐๐๐ sets Definition 3.1: The ๐ โsmall inductive dimension of a space๐, ๐ โ ๐๐๐๐, is defined inductively as follows. A space ๐ satisfies ๐ โ ๐๐๐๐ = โ1 if and only if ๐ is empty. If ๐ is a non-negative integer, then ๐ โ ๐๐๐๐ โค ๐ means that for each point ๐ of ๐ and each open set ๐บ such that ๐ โ ๐บ there exists an ๐ โ ๐๐๐๐ set ๐ such that ๐ โ ๐ โ ๐บ and ๐ โ ๐๐๐๐(๐) โค ๐ โ 1. We put ๐ โ ๐๐๐๐ = ๐ if it is true that ๐ โ ๐๐๐๐ โค ๐, but it is not true that ๐ โ ๐๐๐๐ โค ๐ โ 1. If there exists no integer ๐ for which ๐ โ ๐๐๐๐ โค ๐ then we put ๐ โ ๐๐๐๐ = โ. Definition 3.2: The ๐ โ โsmall inductive dimension of a space๐, ๐ โ โ ๐๐๐๐, is defined inductively as follows. A space ๐ satisfies ๐ โ โ ๐๐๐๐ = โ1 if and only if ๐ is empty. If ๐ is a non-negative integer, then ๐ โ โ ๐๐๐๐ โค ๐ means that for each point ๐ of ๐ and each ๐ โ ๐๐๐๐ set ๐บ such that ๐ โ ๐บ there exists an ๐ โ ๐๐๐๐ set ๐ such that ๐ โ ๐ โ ๐บ and ๐ โ โ ๐๐๐๐(๐) โค ๐ โ 1. We put ๐ โ โ ๐๐๐๐ = ๐ if it is true that ๐ โ โ ๐๐๐๐ โค ๐, but it is not true that ๐ โ โ ๐๐๐๐ โค ๐ โ 1. If there exists no integer ๐ for which ๐ โ โ ๐๐๐๐ โค ๐ then we put ๐ โ โ ๐๐๐๐ = โ. Proposition 3.3: Let ๐ be a topological space. If ๐๐๐๐ is exists then ๐ โ ๐๐๐๐ โค ๐๐๐๐. Proof: By induction on ๐. It is clear ๐ = โ1. Suppose that it is true for ๐ โ 1. Now suppose that ๐๐๐๐ โค ๐, to prove ๐ โ ๐๐๐๐ โค ๐, let ๐ โ ๐ and ๐บ is an open set in ๐ such that ๐ โ ๐บ since ๐๐๐๐ โค ๐ , then there exists an open set ๐ in ๐ such that ๐ โ ๐ โ ๐บ and ๐๐๐๐(๐) โค ๐ โ 1 and since every open set is ๐ โ ๐๐๐๐ set then ๐ is an ๐ โ ๐๐๐๐ set such that ๐ โ ๐ โ ๐บ and ๐ โ ๐๐๐๐(๐) โค ๐ โ 1. Hence ๐ โ ๐๐๐๐ โค ๐.โ Theorem 3.4: Let ๐ be a topological space, then ๐๐๐๐ = 0 if and only if ๐ โ ๐๐๐๐ = 0. Proof: By proposition (3.3). If ๐๐๐๐ = 0 then ๐ โ ๐๐๐๐ โค 0, and since ๐ โ โ then ๐ โ ๐๐๐๐ = 0. Now Let ๐ โ ๐๐๐๐ = 0 and Let ๐ โ ๐ and each open set ๐บ โ ๐ of the point ๐, since ๐ โ ๐๐๐๐ = 0 then there exists an ๐ โ ๐๐๐๐ set ๐ โ ๐ such that ๐ โ ๐ โ ๐บ and ๐ โ ๐๐๐๐(๐) โค โ1. Then ๐(๐) = โ , therefore ๐ is both open and closed, and thus ๐๐๐๐(๐) = โ1. So that ๐๐๐๐ โค 0 and since ๐ โ โ then ๐๐๐๐ = 0. โ Remark 3.5[A.P.Pears ,1975]: Let ๐ be a topological space with ๐๐๐๐ = 0 then ๐ is a regular space. Corollary 3.6: Let ๐ be a topological space, if ๐ โ ๐๐๐๐ = 0 then ๐ is a regular space. Remark 3.7[A.P.Pears ,1975]: A space ๐ satisfies ๐๐๐๐ = 0 if and only if it is not empty and has a base for its topology which consists of open and closed sets. 597 Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 Corollary 3.8: A space ๐ satisfies ๐ โ ๐๐๐๐ = 0 if and only if it is not empty and has a base for its topology which consists of open and closed sets. Proposition 3.9[A.P.Pears ,1975]: For every sub space ๐ด of a space ๐, we have ๐๐๐๐ด โค ๐๐๐๐. Theorem 3.10: For every sub space ๐ด of a space ๐ and ๐ด is open, we have ๐ โ ๐๐๐๐ด โค ๐ โ ๐๐๐๐ Proof: By induction on ๐. If ๐ = โ1 then theorem is true. Suppose that the theorem is true for ๐ โ 1. Now Suppose that ๐ โ ๐๐๐๐ โค ๐ to prove ๐ โ ๐๐๐๐ด โค ๐. Let ๐ โ ๐ด and ๐บ is an open set in ๐ด such that ๐ โ ๐บ. Since ๐บ is open set in ๐ด then there exists ๐ is an open set in ๐ such that ๐บ = ๐ โฉ ๐ด. Since ๐ โ ๐ด and ๐ โ ๐๐๐๐ โค ๐ then there exists an ๐ โ ๐๐๐๐ set ๐ in ๐ such that ๐ โ ๐ โ ๐ and ๐ โ ๐๐๐๐(๐) โค ๐ โ 1. Let ๐ = ๐ โฉ ๐ด is ๐ โ ๐๐๐๐ in ๐ด, by proposition(2.7). Thus ๐ โ ๐ = ๐โ๐ด โ ๐โ๐ด = ๐บ to prove ๐ โ ๐๐๐๐๐ด (๐) โค ๐ โ 1 ๐กโ๐๐ ๐ โ ๐๐๐๐ด โค ๐. ฬ โ ๐ โ ) โฉ ๐ด = (๐ ฬ โฉ ๐ โโ ) โฉ ๐ด ๐๐ด (๐) โ ๐(๐)โ๐ด = (๐ฬ โ ๐ โ )โ๐ด โ (๐ ฬ โฉ (๐ โโ โช ๐ดโโ )] โฉ ๐ด = [(๐ ฬ โฉ ๐ โโ ) โช (๐ ฬ โฉ ๐ดโโ )] โฉ ๐ด = [๐ โ โ โ (๐(๐) โช ๐ดโ ) โฉ ๐ด = (๐(๐) โฉ ๐ด) โช (๐ดโ โฉ ๐ด) โ ๐(๐). Thus ๐ โ ๐๐๐๐๐ด (๐) โค ๐ โ ๐๐๐๐(๐). Since ๐ โ ๐๐๐๐(๐) โค ๐ โ 1 then ๐ โ ๐๐๐๐๐ด (๐) โค ๐ โ 1 (By induction). Therefore ๐ โ ๐๐๐๐ด โค ๐. โ 4. On ๐ฐ๐๐ by using ๐ต โ ๐๐๐๐ sets Definition 4.1: The ๐ โlarge inductive dimension of a space๐, ๐ โ ๐ผ๐๐๐, is defined inductively as follows. A space ๐ satisfies ๐ โ ๐ผ๐๐๐ = โ1 if and only if ๐ is empty. If ๐ is a non-negative integer, then ๐ โ ๐ผ๐๐๐ โค ๐ means that for each closed set ๐ธ and each open set ๐บ of ๐ such that ๐ธ โ ๐บ there exists an ๐ โ ๐๐๐๐ set ๐ such that ๐ธ โ ๐ โ ๐บ and ๐ โ ๐ผ๐๐๐(๐) โค ๐ โ 1. We put ๐ โ ๐ผ๐๐๐ = ๐ if it is true that ๐ โ ๐ผ๐๐๐ โค ๐, but it is not true that ๐ โ ๐ผ๐๐๐ โค ๐ โ 1. If there exists no integer ๐ for which ๐ โ ๐ผ๐๐๐ โค ๐ then we put ๐ โ ๐ผ๐๐๐ = โ. Definition 4.2: The ๐ โ โlarge inductive dimension of a space๐, ๐ โ โ ๐ผ๐๐๐, is defined inductively as follows. A space ๐ satisfies ๐ โ โ ๐ผ๐๐๐ = โ1 if and only if ๐ is empty. If ๐ is a non-negative integer, then ๐ โ โ ๐ผ๐๐๐ โค ๐ means that for each ๐ โ ๐๐๐๐ ๐๐ set ๐ธ and each open set ๐บ of ๐ such that ๐ธ โ ๐บ there exists an ๐ โ ๐๐๐๐ set ๐ such that ๐ธ โ ๐ โ ๐บ and ๐ โ โ ๐ผ๐๐๐(๐) โค ๐ โ 1. We put ๐ โ โ ๐ผ๐๐๐ = ๐ if it is true that ๐ โ โ ๐ผ๐๐๐ โค ๐, but it is not true that ๐ โ โ ๐ผ๐๐๐ โค ๐ โ 1. If there exists no integer ๐ for which ๐ โ โ ๐ผ๐๐๐ โค ๐ then we put ๐ โ โ ๐ผ๐๐๐ = โ. Definition 4.3: The ๐ โโ โlarge inductive dimension of a space๐, ๐ โโ โ ๐ผ๐๐๐, is defined inductively as follows. A space ๐ satisfies ๐ โโ โ ๐ผ๐๐๐ = โ1 if and only if ๐ is empty. If ๐ is a non-negative integer, then ๐ โโ โ ๐ผ๐๐๐ โค ๐ means that for each ๐ โ ๐๐๐๐ ๐๐ set ๐ธ and each ๐ โ ๐๐๐๐ set ๐บ of ๐ such that ๐ธ โ ๐บ there exists an ๐ โ ๐๐๐๐ set ๐ such that ๐ธ โ ๐ โ ๐บ and ๐ โโ โ ๐ผ๐๐๐(๐) โค ๐ โ 1. We put ๐ โโ โ ๐ผ๐๐๐ = ๐ if it is true that ๐ โโ โ ๐ผ๐๐๐ โค ๐, but it is not true that ๐ โโ โ ๐ผ๐๐๐ โค ๐ โ 1. If there exists no integer ๐ for which ๐ โโ โ ๐ผ๐๐๐ โค ๐ then we put ๐ โโ โ ๐ผ๐๐๐ = โ. Proposition 4.4: Let ๐ be a topological space, if ๐ผ๐๐๐ is exist then ๐ โ ๐ผ๐๐๐ โค ๐ผ๐๐๐. Proof: By induction on ๐. It is clear ๐ = โ1. Suppose that it is true for ๐ โ 1. Now suppose that ๐ผ๐๐๐ โค ๐, to prove ๐ โ ๐ผ๐๐๐ โค ๐, let ๐ถ be a ๐๐๐๐ ๐๐ set in ๐ and ๐บ is an open set in ๐ such that ๐ถ โ ๐บ since ๐ผ๐๐๐ โค ๐ , then there exists an open set ๐ in ๐ such that ๐ถ โ ๐ โ ๐บ and ๐ผ๐๐๐(๐) โค ๐ โ 1 and since every open set is ๐ โ ๐๐๐๐ set then ๐ is an ๐ โ ๐๐๐๐ set such that ๐ถ โ ๐ โ ๐บ and ๐ โ ๐ผ๐๐๐(๐) โค ๐ โ 1. Hence ๐ โ ๐ผ๐๐๐ โค ๐.โ 598 Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 Proposition 4.5: Let ๐ be a topological space then: 1. If ๐ โโ โ ๐ผ๐๐๐ is exist then ๐ โ โ ๐ผ๐๐๐ โค ๐ โโ โ ๐ผ๐๐๐. 2. If ๐ โ โ ๐ผ๐๐๐ is exist then ๐ โ ๐ผ๐๐๐ โค ๐ โ โ ๐ผ๐๐๐. Theorem 4.6: Let ๐ be a topological space, then ๐ผ๐๐๐ = 0 if and only if ๐ โ ๐ผ๐๐๐ = 0. Proof: By proposition (4.5). If ๐ผ๐๐๐ = 0 then ๐ โ ๐ผ๐๐๐ โค 0, and since ๐ โ โ then ๐ โ ๐ผ๐๐๐ = 0. Now Let ๐ โ ๐ผ๐๐๐ = 0 and Let ๐น is closed set in ๐ and each open set ๐บ in ๐ such that ๐น โ ๐. Since ๐ โ ๐ผ๐๐๐ = 0 then there exists an ๐ โ ๐๐๐๐ set ๐ in ๐ such that ๐น โ ๐ โ ๐บ and ๐ โ ๐ผ๐๐๐(๐) = โ1. Then ๐(๐) = โ , therefore ๐ is both open and closed, and thus ๐ผ๐๐๐(๐) = โ1. So that ๐ผ๐๐๐ โค 0 and since ๐ โ โ then ๐ผ๐๐๐ = 0. โ Remark 4.7[A.P.Pears ,1975]: Let ๐ be a topological space with ๐ผ๐๐๐ = 0 then ๐ is a normal space. Corollary 4.8: Let ๐ be a topological space with ๐ โ ๐ผ๐๐๐ = 0 then ๐ is a normal space. Proof: It follows from theorem (4.6). Remark 4.9[A.P.Pears ,1975]: A space ๐ satisfies ๐ผ๐๐๐ = 0 if and only if it is non-empty and has a base for its topology which consist of open and closed sets. Corollary 4.10: A space ๐ satisfies ๐ โ ๐ผ๐๐๐ = 0 if and only if it is non-empty and has a base for its topology which consist of open and closed sets. Proposition 4.11[A.P.Pears ,1975]:Let ๐ be a topological space, if ๐ด is a closed sub set of a space ๐ we have ๐ผ๐๐๐ด โค ๐ผ๐๐๐. Theorem 4.12: Let ๐ be a topological space, if ๐ด is a closed and open sub set of a space ๐, we have ๐ โ ๐ผ๐๐๐ด โค ๐ โ ๐ผ๐๐๐. Proof: By induction on ๐. If ๐ = โ1 then theorem is true. Suppose that the theorem is true for ๐ โ 1. Now Suppose that ๐ โ ๐ผ๐๐๐ โค ๐ to prove ๐ โ ๐ผ๐๐๐ด โค ๐. Let ๐น is a closed set in ๐ด and ๐บ is an open set in ๐ด such that ๐น โ ๐บ. Since ๐น is a closed set in ๐ด and ๐ด is a closed set in ๐ then ๐น is a closed set in ๐. Since ๐บ is open set in ๐ด then there exists ๐ is an open set in ๐ such that ๐บ = ๐ โฉ ๐ด. Since ๐น โ ๐ and ๐ โ ๐ผ๐๐๐ โค ๐ then there exists an ๐ โ ๐๐๐๐ set ๐ in ๐ such that ๐น โ ๐ โ ๐ and ๐ โ ๐ผ๐๐๐(๐) โค ๐ โ 1. Let ๐ = ๐ โฉ ๐ด is ๐ โ ๐๐๐๐ in ๐ด, by proposition(2.7). Thus ๐น โ ๐ = ๐โ๐ด โ ๐โ๐ด = ๐บ ฬ โ ๐ โ ) โฉ ๐ด = (๐ ฬ โฉ ๐ โโ ) โฉ ๐ด ๐๐ด (๐) โ ๐(๐)โ๐ด = (๐ฬ โ ๐ โ )โ๐ด โ (๐ ฬ โฉ (๐ โโ โช ๐ดโโ )] โฉ ๐ด = [(๐ ฬ โฉ ๐ โโ ) โช (๐ ฬ โฉ ๐ดโโ )] โฉ ๐ด = [๐ โ โ โ (๐(๐) โช ๐ดโ ) โฉ ๐ด = (๐(๐) โฉ ๐ด) โช (๐ดโ โฉ ๐ด) โ ๐(๐). ฬ ฬ ฬ ฬ ฬ ฬ ฬ ฬ ๐๐ด (๐)๐(๐) = ฬ ฬ ฬ ฬ ฬ ฬ ฬ ฬ ๐๐ด (๐) โฉ ๐(๐) = ๐๐ด (๐) โฉ ๐(๐) = ๐๐ด (๐). ๐๐ด (๐) is closed set in ๐ด, since ๐ด is a closed set in ๐ then ๐๐ด (๐) is a closed set in ๐(๐). Thus ๐ โ ๐ผ๐๐๐๐ด (๐) โค ๐ โ ๐ผ๐๐๐(๐). Since ๐ โ ๐ผ๐๐๐(๐) โค ๐ โ 1 then ๐ โ ๐ผ๐๐๐๐ด (๐) โค ๐ โ 1 (By induction). Therefore ๐ โ ๐๐๐๐ด โค ๐. โ 5. On ๐ ๐๐ by using ๐ต โ ๐๐๐๐ sets Definition 5.1: The ๐ โcovering dimension ๐ โ ๐๐๐๐ of a topological space ๐ is the least integer ๐ such that every finite open covering of ๐ has an ๐ โ ๐๐๐๐ refinement of order not 599 Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 exceeding ๐ or is โ if there is no such integer. Thus ๐ โ ๐๐๐๐ = โ1 if and only if ๐ is empty, and ๐ โ ๐๐๐๐ โค ๐ if each finite open covering of ๐ has ๐ โ ๐๐๐๐ refinement of order not exceeding ๐. We have ๐ โ ๐๐๐๐ = ๐ if it is true that๐ โ ๐๐๐๐ โค ๐ but it is not true that ๐ โ ๐๐๐๐ โค ๐ โ 1. Finally ๐ โ ๐๐๐๐ = โ if for every integer ๐ it is false that ๐ โ ๐๐๐๐ โค ๐. Definition 5.2: The ๐ โ โcovering dimension ๐ โ โ ๐๐๐๐ of a topological space ๐ is the least integer ๐ such that every finite ๐ โ ๐๐๐๐ covering of ๐ has an ๐ โ ๐๐๐๐ refinement of order not exceeding ๐ or is โ if there is no such integer. Thus ๐ โ โ ๐๐๐๐ = โ1 if and only if ๐ is empty, and ๐ โ โ ๐๐๐๐ โค ๐ if each finite ๐ โ ๐๐๐๐ covering of ๐ has ๐ โ ๐๐๐๐ refinement of order not exceeding ๐. We have ๐ โ โ ๐๐๐๐ = ๐ if it is true that๐ โ โ ๐๐๐๐ โค ๐ but it is not true that ๐ โ โ ๐๐๐๐ โค ๐ โ 1. Finally ๐ โ โ ๐๐๐๐ = โ if for every integer ๐ it is false that ๐ โ โ ๐๐๐๐ โค ๐. Proposition 5.3: Let ๐ be a topological space, if ๐๐๐๐ is exists then ๐ โ ๐๐๐๐ โค ๐๐๐๐ Proof: By induction on ๐. If ๐ = โ1 then ๐๐๐๐ = โ1 and ๐ = โ , so that ๐ โ ๐๐๐๐ = โ1. Suppose statement is true for ๐ โ 1, now let ๐๐๐๐ โค ๐ to prove ๐ โ ๐๐๐๐ โค ๐. Let ๐ฐ = {๐1 , ๐2 , โฆ , ๐๐ } be a finite open cover of ๐. Since ๐๐๐๐ โค ๐ then ๐ฐ has ๐ โ ๐๐๐๐ refinement ๐ฑ of ๐๐๐๐๐ โค ๐. Hence ๐ โ ๐๐๐๐ โค ๐. Proposition 5.4: Let ๐ be a topological space, if ๐ โ โ ๐๐๐๐ is exists then ๐ โ ๐๐๐๐ โค ๐ โ โ ๐๐๐๐ Theorem 5.5: Let ๐ be a topological space, if ๐ has a base of sets which are both ๐ โ ๐๐๐๐ and ๐ โ ๐๐๐๐ ๐๐ then ๐ โ ๐๐๐๐ = 0, for a ๐1 โ ๐ ๐๐๐๐ the converse is true. Proof: Suppose ๐ has a base of sets which are both ๐ โ ๐๐๐๐ and ๐ โ ๐๐๐๐ ๐๐. Let {๐๐ }๐พ ๐=1 be a finite open cover of ๐, it has an ๐ โ ๐๐๐๐ refinement ๐, if ๐ค โ ๐ then ๐ โ ๐๐ for some ๐. Let each ๐ค ๐๐ ๐ be associated with one of the sets ๐๐ containing it and let ๐๐ be the union of those members of ๐ thus associated with ๐๐ . Thus ๐๐ is ๐ โ ๐๐๐๐ set and hence {๐๐ }๐พ ๐=1 forms disjoint ๐ โ ๐๐๐๐ refinement of {๐๐ }๐พ then ๐ โ ๐๐๐๐ = 0. ๐=1 Conversely Suppose ๐ is ๐1 โ ๐ ๐๐๐๐such that ๐ โ ๐๐๐๐ = 0. Let ๐ โ ๐ and ๐บ be an open set in ๐ such that ๐ โ ๐บ. Then {๐} is closed set and {๐บ, ๐ โ {๐}} is finite open cover of ๐ so it has an ๐ โ ๐๐๐๐ refinement of order 0. Let ๐ถ1 be the union of ๐ โ ๐๐๐๐ sets in ๐บ and ๐ถ2 be the union of the ๐ โ ๐๐๐๐ sets in ๐ โ {๐}. Then ๐ถ1 โฉ ๐ถ2 = โ , ๐ถ1 โช ๐ถ2 = ๐ and ๐ถ1 , ๐ถ2 are ๐ โ ๐๐๐๐ sets and ๐ โ ๐๐๐๐ ๐๐ sets in ๐. Thus ๐ โ ๐๐๐๐ ๐๐ set in ๐ and hence ๐ has a base of sets which are both ๐ โ ๐๐๐๐ and ๐ โ ๐๐๐๐ ๐๐ sets. โ Theorem 5.6: Let ๐ be a topological space, if ๐ has ๐ โ ๐๐๐ ๐ of sets which are both ๐ โ ๐๐๐๐ and ๐ โ ๐๐๐๐ ๐๐ then ๐ โ โ ๐๐๐๐ = 0, for a ๐๐1 โ ๐ ๐๐๐๐ the converse is true. Proof: Suppose ๐ has ๐ โ ๐๐๐ ๐ of sets which are both ๐ โ ๐๐๐๐ and ๐ โ ๐๐๐๐ ๐๐. Let {๐๐ }๐พ ๐=1 be a finite ๐ โ ๐๐๐๐ cover of ๐, it has an ๐ โ ๐๐๐๐ refinement ๐, if ๐ค โ ๐ then ๐ โ ๐๐ for some ๐. Let each ๐ค ๐๐ ๐ be associated with one of the sets ๐๐ containing it and let ๐๐ be the union of those members of ๐ thus associated with ๐๐ . Thus ๐๐ is ๐ โ ๐๐๐๐ set and hence ๐พ โ {๐๐ }๐พ ๐=1 forms disjoint ๐ โ ๐๐๐๐ refinement of {๐๐ }๐=1 then ๐ โ ๐๐๐๐ = 0. Conversely Suppose ๐ is ๐๐1 โ ๐ ๐๐๐๐ such that ๐ โ โ ๐๐๐๐ = 0. Let ๐ โ ๐ and ๐บ be an ๐ โ ๐๐๐๐ set in ๐ such that ๐ โ ๐บ. Then {๐} is closed set and {๐บ, ๐ โ {๐}} is finite ๐ โ ๐๐๐๐ cover of ๐. 600 Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 Since ๐ โ โ ๐๐๐๐ = 0 then there exists an ๐ โ ๐๐๐๐ refinement {๐, ๐} of order 0. Such that ๐ โฉ ๐ = โ , โช ๐ = ๐ , ๐ โ ๐บ and ๐ โ ๐ โ {๐}. Then ๐ is ๐ โ ๐๐๐๐ and ๐ โ ๐๐๐๐ ๐๐ set in ๐ such that ๐ โ ๐ โ โ ๐ โ ๐บ and hence ๐ has ๐ โ ๐๐๐ ๐ of ๐ โ ๐๐๐๐ and ๐ โ ๐๐๐๐ ๐๐ sets. โ Remark 5.7[A.P.Pears ,1975]: Let ๐ be a topological space with ๐๐๐๐ = 0 then ๐ is a normal space. Theorem 5.8: Let ๐ be a topological space with ๐ โ ๐๐๐๐ = 0 then ๐ is ๐ โ ๐๐๐๐๐๐ space. Proof: Let ๐น1 and ๐น2 be disjoint closed sets of ๐, then {๐ โ ๐น2 , ๐ โ ๐น1 } is an open covering of ๐. Since ๐ โ ๐๐๐๐ = 0 then it has ๐ โ ๐๐๐๐ refinement of order 0, hence there exist ๐ โ ๐๐๐๐ sets ๐ป and ๐บ such that ๐ป โฉ ๐บ = โ , โช ๐บ = ๐ , ๐ป โ ๐ โ ๐น1 and ๐บ โ ๐ โ ๐น2 . Thus ๐น1 โ ๐ป โ = ๐บ , ๐น2 โ ๐บ โ = ๐ป and since ๐ป โฉ ๐บ = โ then ๐ is ๐ โ ๐๐๐๐๐๐ ๐ ๐๐๐๐. โ Theorem 5.9: Let ๐ be a topological space with ๐ โ โ ๐๐๐๐ = 0 then ๐ is ๐ โโ โ ๐๐๐๐๐๐ space. Proof: Let ๐น1 and ๐น2 be disjoint ๐ โ ๐๐๐๐ ๐๐ sets of ๐, then {๐ โ ๐น2 , ๐ โ ๐น1 } is an ๐ โ ๐๐๐๐ covering of ๐. Since ๐ โ โ ๐๐๐๐ = 0 then it has ๐ โ ๐๐๐๐ refinement of order 0, hence there exist ๐ โ ๐๐๐๐ sets ๐ป and ๐บ such that ๐ป โฉ ๐บ = โ , โช ๐บ = ๐ , ๐ป โ ๐ โ ๐น1 and ๐บ โ ๐ โ ๐น2 . Thus ๐น1 โ ๐ป โ = ๐บ , ๐น2 โ ๐บ โ = ๐ป and since ๐ป โฉ ๐บ = โ then ๐ is ๐ โโ โ ๐๐๐๐๐๐ ๐ ๐๐๐๐. โ Remark 5.10: Let ๐ = {๐, ๐, ๐} , ๐ = {โ , ๐, {๐}, {๐}, {๐, ๐}}.In example show that ๐๐๐๐ = ๐ โ ๐๐๐๐ = 0. Since ๐ is the open cover of ๐ and its only refinement of it. Then ๐๐๐๐ = 0 and since ๐ โ ๐๐๐๐ โค ๐๐๐๐ , ๐ โ โ then ๐๐๐๐ = ๐ โ ๐๐๐๐ = 0. Proposition 5.11[A.P.Pears ,1975]: Let ๐ be a topological space, if ๐ด is a closed sub set of a space ๐ we have ๐๐๐๐ด โค ๐๐๐๐. Theorem 5.12: Let ๐ be a topological space, if ๐ด is a closed and open sub set of a space ๐, we have ๐ โ ๐๐๐๐ด โค ๐ โ ๐๐๐๐ Proof: Suppose that ๐ โ ๐๐๐๐ โค ๐ to prove ๐ โ ๐๐๐๐ด โค ๐. Let {๐1 , ๐2 , โฆ , ๐๐ } be an open covering of ๐ด. Then for each ๐, ๐๐ = ๐ดโ๐๐ , where ๐๐ is open set in ๐. The finite open covering {๐1 , ๐2 , โฆ , ๐๐ , ๐ โ ๐ด} of ๐ has an ๐ โ ๐๐๐๐ refinement ๐ of order โค ๐. Let ๐ = {๐ค โฉ ๐ด: ๐ค โ ๐} where ๐ค โฉ ๐ด is an ๐ โ ๐๐๐๐ in ๐ด by proposition(2.7). Then ๐ is an ๐ โ ๐๐๐๐ refinement of {๐1 , ๐2 , โฆ , ๐๐ } of orderโค ๐. Thus ๐ โ ๐๐๐๐ด โค ๐. โ Theorem 5.13: Let ๐ be a topological space, if ๐ด is a closed and open sub set of a space ๐, we have ๐ โ โ ๐๐๐๐ด โค ๐ โ โ ๐๐๐๐ โ Proof: Suppose that ๐ โ ๐๐๐๐ โค ๐ to prove ๐ โ โ ๐๐๐๐ด โค ๐. Let {๐1 , ๐2 , โฆ , ๐๐ } be an ๐ โ ๐๐๐๐ covering of ๐ด. Then for each ๐, ๐๐ = ๐ดโ๐๐ , where ๐๐ is ๐ โ ๐๐๐๐ set in ๐. The finite ๐ โ ๐๐๐๐ covering {๐1 , ๐2 , โฆ , ๐๐ , ๐ โ ๐ด} of ๐ has an ๐ โ ๐๐๐๐ refinement ๐ of order โค ๐. Let ๐ = {๐ค โฉ ๐ด: ๐ค โ ๐} where ๐ค โฉ ๐ด is an ๐ โ ๐๐๐๐ in ๐ด. Then ๐ is an ๐ โ ๐๐๐๐ refinement of {๐1 , ๐2 , โฆ , ๐๐ } of orderโค ๐. Thus ๐ โ โ ๐๐๐๐ด โค ๐. โ 6. Relation between the dimensions ๐๐๐ ๐๐๐ ๐ฐ๐๐ by using ๐ต โ ๐๐๐๐ sets Proposition 6.1: Let ๐ be a topological space, if ๐ is ๐1 โ ๐ ๐๐๐๐ then ๐ โ ๐๐๐๐ โค ๐ โ ๐ผ๐๐๐ Proof: By induction on n. If ๐ = โ1 then the statement is true. Suppose that the statement is true for ๐ โ 1. Now Suppose that ๐ โ ๐ผ๐๐๐ โค ๐, to prove ๐ โ ๐๐๐๐ โค ๐. Let ๐ โ ๐ and each open set ๐บ โ ๐ of the point ๐, since ๐ is ๐1 โ ๐ ๐๐๐๐ then {๐} โ ๐บ such that {๐} is closed set. Since ๐ โ ๐ผ๐๐๐ โค ๐ 601 Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 then there exists an ๐ โ ๐๐๐๐ set ๐ in ๐ such that ๐ โ ๐ โ ๐บ and ๐ โ ๐ผ๐๐๐(๐) โค ๐ โ 1. Hence ๐ โ ๐๐๐๐(๐) โค ๐ โ 1 and ๐ โ ๐ โ ๐บ. Then ๐ โ ๐๐๐๐ โค ๐. โ Proposition 6.2: Let ๐ be a topological space, if ๐ is ๐๐1 โ ๐ ๐๐๐๐ then ๐ โ ๐๐๐๐ โค ๐ โ โ ๐ผ๐๐๐ Proof: By induction on n. If ๐ = โ1 then the statement is true. Suppose that the statement is true for ๐ โ 1. Now Suppose that ๐ โ โ ๐ผ๐๐๐ โค ๐, to prove ๐ โ ๐๐๐๐ โค ๐. Let ๐ โ ๐ and each open set ๐บ โ ๐ of the point ๐, since ๐ is ๐๐1 โ ๐ ๐๐๐๐ then {๐} โ ๐บ such that {๐} is ๐ โ ๐๐๐๐ ๐๐ set. Since ๐ โ โ ๐ผ๐๐๐ โค ๐ then there exists an ๐ โ ๐๐๐๐ set ๐ in ๐ such that ๐ โ ๐ โ ๐บ and ๐ โ โ ๐ผ๐๐๐(๐) โค ๐ โ 1. Hence ๐ โ ๐๐๐๐(๐) โค ๐ โ 1 and ๐ โ ๐ โ ๐บ. Then ๐ โ ๐๐๐๐ โค ๐. โ Proposition 6.3: Let ๐ be a topological space, if ๐ is ๐๐1 โ ๐ ๐๐๐๐ then ๐ โ โ ๐๐๐๐ โค ๐ โโ โ ๐ผ๐๐๐ Proof: By induction on n. If ๐ = โ1 then the statement is true. Suppose that the statement is true for ๐ โ 1. Now Suppose that ๐ โโ โ ๐ผ๐๐๐ โค ๐, to prove ๐ โ โ ๐๐๐๐ โค ๐. Let ๐ โ ๐ and each ๐ โ ๐๐๐๐ set ๐บ โ ๐ of the point ๐, since ๐ is ๐๐1 โ ๐ ๐๐๐๐ then {๐} โ ๐บ such that {๐} is ๐ โ ๐๐๐๐ ๐๐ set. Since ๐ โโ โ ๐ผ๐๐๐ โค ๐ then there exists an ๐ โ ๐๐๐๐ set ๐ in ๐ such that ๐ โ ๐ โ ๐บ and ๐ โโ โ ๐ผ๐๐๐(๐) โค ๐ โ 1. Hence ๐ โ โ ๐๐๐๐(๐) โค ๐ โ 1 and ๐ โ ๐ โ ๐บ. Then ๐ โ โ ๐๐๐๐ โค ๐. โ Proposition 6.4: Let ๐ be a topological space, if ๐ is a regular space then ๐ โ ๐๐๐๐ โค ๐ โ ๐ผ๐๐๐ Proof: By induction on n. If ๐ = โ1 then the statement is true. Suppose that the statement is true for ๐ โ 1. Now Suppose that ๐ โ ๐ผ๐๐๐ โค ๐, to prove ๐ โ ๐๐๐๐ โค ๐. Let ๐ โ ๐ผ๐๐๐ โค ๐ and let ๐ โ ๐ and each open set ๐บ โ ๐ of the point ๐, since ๐ is a regular space then there exists an ๐๐๐๐ set ๐ in ๐ such that๐ โ ๐ โ ๐ฬ โ ๐บ. Also.. Since ๐ โ ๐ผ๐๐๐ โค ๐ and ๐ฬ is closed, ๐ฬ โ ๐บ then there exists an ๐ โ ๐๐๐๐ set ๐ in ๐ such that ๐ฬ โ ๐ โ ๐บ and๐ โ ๐ผ๐๐๐(๐) โค ๐ โ 1. Hence ๐ โ ๐๐๐๐(๐) โค ๐ โ 1 and ๐ โ ๐ โ ๐บ (by induction). Therefore ๐ โ ๐๐๐๐ โค ๐. โ Proposition 6.5: Let ๐ be a topological space, if ๐ is a ๐ โ ๐๐๐๐ข๐๐๐ space then ๐ โ ๐๐๐๐ โค ๐ โ โ ๐ผ๐๐๐ Proof: By induction on n. If ๐ = โ1 then the statement is true. Suppose that the statement is true for ๐ โ 1. Now Suppose that ๐ โ โ ๐ผ๐๐๐ โค ๐, to prove ๐ โ ๐๐๐๐ โค ๐. Let ๐ โ โ ๐ผ๐๐๐ โค ๐ and let ๐ โ ๐ and each open set ๐บ โ ๐ of the point ๐, since ๐ is ๐ โ ๐๐๐๐ข๐๐๐ space then there exists an ๐ โ ๐๐๐๐ set ๐ in ๐ such that๐ โ ๐ โ ๐ฬ ๐ โ ๐บ. Also.. Since ๐ โ โ ๐ผ๐๐๐ โค ๐ and ๐ฬ ๐ is ๐ โ ๐๐๐๐ ๐๐ , ๐ฬ ๐ โ ๐บ then there exists an ๐ โ ๐๐๐๐ set ๐ in ๐ such that ๐ฬ ๐ โ ๐ โ ๐บ and ๐ โ โ ๐ผ๐๐๐(๐) โค ๐ โ 1. Hence ๐ โ ๐๐๐๐(๐) โค ๐ โ 1 and ๐ โ ๐ โ ๐บ (by induction). Therefore ๐ โ ๐๐๐๐ โค ๐. โ Proposition 6.6: Let ๐ be a topological space, if ๐ is a ๐ โ โ ๐๐๐๐ข๐๐๐ space then ๐ โ โ ๐๐๐๐ โค ๐ โโ โ ๐ผ๐๐๐ 602 Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 Proof: By induction on n. If ๐ = โ1 then the statement is true. Suppose that the statement is true for ๐ โ 1. Now Suppose that ๐ โโ โ ๐ผ๐๐๐ โค ๐, to prove ๐ โ โ ๐๐๐๐ โค ๐. Let ๐ โโ โ ๐ผ๐๐๐ โค ๐ and let ๐ โ ๐ and each ๐ โ ๐๐๐๐ set ๐บ โ ๐ of the point ๐, since ๐ is ๐ โ โ ๐๐๐๐ข๐๐๐ space then there exists an ๐๐๐๐ set ๐ in ๐ such that ๐ โ ๐ โ ๐ฬ ๐ โ ๐บ. Also.. Since ๐ โโ โ ๐ผ๐๐๐ โค ๐ and ๐ฬ ๐ is โ๐๐๐๐ ๐๐ , ๐ฬ ๐ โ ๐บ then there exists an ๐ โ ๐๐๐๐ set ๐ in ๐ such that ๐ฬ ๐ โ ๐ โ ๐บ and ๐ โโ โ ๐ผ๐๐๐(๐) โค ๐ โ 1. Hence ๐ โ โ ๐๐๐๐(๐) โค ๐ โ 1 and ๐ โ ๐ โ ๐บ (by induction). Therefore ๐ โ โ ๐๐๐๐ โค ๐. โ Theorem 6.7: Let ๐ be a topological space, if ๐ is a compact space and ๐ โ ๐๐๐๐ = 0 then ๐ โ ๐ผ๐๐๐ = 0. Proof: Let ๐ is compact space such that๐ โ ๐๐๐๐ = 0. Let ๐น be a closed set of ๐ and ๐บ be an open set of ๐ such that ๐น โ ๐บ. Since๐ โ ๐๐๐๐ = 0, for each ๐ โ ๐น there exist an ๐ โ ๐๐๐๐ and ๐ โ ๐๐๐๐ ๐๐ sets ๐๐ such that ๐ โ ๐๐ โ ๐บ hence๐น โ โ๐โ๐น ๐๐ โ ๐บ. Since ๐น be a closed set in the compact space๐, ๐น is compact , hence there exist points ๐1 , ๐2 , โฆ . . , ๐๐ of ๐น such that๐น โ โ๐๐=1 ๐๐๐ โ ๐บ. Since โ๐๐=1 ๐๐๐ is ๐ โ ๐๐๐๐ and ๐ โ ๐๐๐๐ ๐๐ of ๐. It following that ๐ โ ๐ผ๐๐๐ = 0. โ Theorem 6.8: Let ๐ be a topological space, if ๐ is a ๐ โ ๐๐๐๐๐๐๐ก space and ๐ โ ๐๐๐๐ = 0 then ๐ โ โ ๐ผ๐๐๐ = 0. Proof: Let ๐ be ๐ โ ๐๐๐๐๐๐๐ก space such that๐ โ ๐๐๐๐ = 0. Let ๐น be an ๐ โ ๐๐๐๐ ๐๐ set of ๐ and ๐บ be an open set of ๐ such that ๐น โ ๐บ. Since๐ โ ๐๐๐๐ = 0, for each ๐ โ ๐น there exist an ๐ โ ๐๐๐๐ and ๐ โ ๐๐๐๐ ๐๐ sets ๐๐ such that ๐ โ ๐๐ โ ๐บ hence๐น โ โ๐โ๐น ๐๐ โ ๐บ. Since ๐น be an ๐ โ ๐๐๐๐ ๐๐ set in the ๐ โ ๐๐๐๐๐๐๐ก space๐, ๐น is ๐ โ ๐๐๐๐๐๐๐ก space, hence there exist points ๐1 , ๐2 , โฆ . . , ๐๐ of ๐น such that๐น โ โ๐๐=1 ๐๐๐ โ ๐บ. Since โ๐๐=1 ๐๐๐ is ๐ โ ๐๐๐๐ and ๐ โ ๐๐๐๐ ๐๐ of ๐. It following that ๐ โ โ ๐ผ๐๐๐ = 0. โ Theorem 6.9: Let ๐ be a topological space, if ๐ is a ๐ โ ๐๐๐๐๐๐๐ก space and ๐ โ โ ๐๐๐๐ = 0 then ๐ โโ โ ๐ผ๐๐๐ = 0. Proof: Let ๐ be ๐ โ ๐๐๐๐๐๐๐ก space such that ๐ โ ๐๐๐๐ = 0. Let ๐น be an ๐ โ ๐๐๐๐ ๐๐ set of ๐ and ๐บ be an ๐ โ ๐๐๐๐ set of ๐ such that ๐น โ ๐บ. Since๐ โ ๐๐๐๐ = 0, for each ๐ โ ๐น there exist an ๐ โ ๐๐๐๐ and ๐ โ ๐๐๐๐ ๐๐ sets ๐๐ such that ๐ โ ๐๐ โ ๐บ hence๐น โ โ๐โ๐น ๐๐ โ ๐บ. Since ๐น be an ๐ โ ๐๐๐๐ ๐๐ set in the ๐ โ ๐๐๐๐๐๐๐ก space๐, ๐น is ๐ โ ๐๐๐๐๐๐๐ก space, hence there exist points ๐1 , ๐2 , โฆ . . , ๐๐ of ๐น such that๐น โ โ๐๐=1 ๐๐๐ โ ๐บ. Since โ๐๐=1 ๐๐๐ is ๐ โ ๐๐๐๐ and ๐ โ ๐๐๐๐ ๐๐ of ๐. It following that ๐ โ โ ๐ผ๐๐๐ = 0. โ References AL-Omari, A. and M.S.Md.Noorani, 2009 โNew characterizations of compact spacesโ, proceedings of 5๐กโ Asian Mathematical conference, Malaysia. Atallah Themer AL-Ani, 1974 โOn compactifiction, mapping and dimension theoryโ,Ph.D.Dissertation university of London, Queen Elizabeth college. 603 Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 Burbaki, N. 1989 โElements of Mathematics; General Topologyโ Springer verlag , Berlin, Hedelberg, New York, London, Paris, Tokyo, 2๐๐ Edition. college of mathematics and computer science. Gemignani, M.C. 1967.โElementary Topologyโ, Reading, Mass: Addison- Wwsley Puplishing Co.Inc. . Hamza S.H. and F.M.Majhool, 2011 โOn ๐ โ ๐๐๐๐๐๐ ๐ด๐๐ก๐๐๐โ,M.Sc., thesis university of ALQadisiya. Hashmiya Ibrahim Nasser, 2012 โOn some topological spaces by using ๐ โ ๐๐๐๐ setโ M.Sc. thesis university of AL-Qadisiya, college of mathematics and computer science. Maheshwari, S.N.and Thakur,S.S. , 1985โOn ๐ผ โ ๐๐๐๐๐๐๐ก ๐ ๐๐๐๐โ, Bulletin of the Institute of Mathematics, Academia sinica, Vol.13, No.4, Dec. 1985,341-347. Navalagi, G.B. , 1991 โDefintion Bank in General topologyโ, (54) G . Nedaa Hasan Hajee, 2011 โOn Dimension Theorey By using Feebly open setโ, M.Sc. thesis university of AL-Qadisiya, college of mathematics and computer science. Pears, A.P. 1975โOn Dimension Theory of General Spacesโ Cambridge university press. Pervin, N.J. 1964 โFoundation of General Topologyโ, Acadmic press, New York. Raad Aziz Hussain AL-Abdulla, 1992 โOn Dimension Theoryโ, M.Sc. thesis university of Baghdad, college of science. Ryzard Engelking , 1989 โGeneral topoplogyโ, Berlin Heldermann. Ryzard Engelking, 1978 โDimension Theoryโ. Sama Kadhim Gaber , 2010 โOn b-Dimension Theoryโ, M.Sc. thesis university of AL-Qadisiya, 604