Download On Dimension Theory by Using Sets

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
On Dimension Theory by Using ๐‘ต โˆ’ ๐‘ถ๐’‘๐’†๐’ Sets
Enas Ridha Ali
Raad Aziz Hussain
College of Computer science and Mathematics University of AL-Qadisiya
[email protected]
[email protected]
Abstract
In this paper we discuss new type of dimension theory by using ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets. We the concept of
๐‘–๐‘›๐‘‘๐‘‹, ๐ผ๐‘›๐‘‘๐‘‹, ๐‘‘๐‘–๐‘š๐‘‹, for a topological space ๐‘‹ have been studied. In this work, these concepts will be extended by
using ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets.
Key words: ๐‘–๐‘›๐‘‘๐‘‹, ๐ผ๐‘›๐‘‘๐‘‹, ๐‘‘๐‘–๐‘š๐‘‹,
โ€ซุงู„ุฎุงู„ุตุฉโ€ฌ
๐‘–๐‘›๐‘‘๐‘‹, ๐ผ๐‘›๐‘‘๐‘‹, ๐‘‘๐‘–๐‘š๐‘‹, โ€ซููŠ ู‡ุฐุง ุงู„ุจุญุซ ู†ู†ุงู‚ุด ู†ูˆุน ุฌุฏูŠุฏ ู„ู†ุธุฑูŠุฉ ุงู„ุจุนุฏ ุจุฃุณุชุฎุฏุงู… ุงู„ู…ุฌู…ูˆุนุงุช ุงู„ู…ูุชูˆุญุฉ ู…ู† ุงู„ู†ู…ุท๐‘ ู„ู‚ุฏ ุฏุฑุณู†ุง ุงู„ู…ูุงู‡ูŠู…โ€ฌ
๐‘ โ€ซู„ู„ูุถุงุกุงุช ุงู„ุชุจูˆู„ูˆุฌูŠุฉ ๐‘‹ููŠ ู‡ุฐุง ุงู„ุนู…ู„ ุณูˆู ู†ูˆุณุน ู‡ุฐู‡ ุงู„ู…ูุงู‡ูŠู… ุจุฃุณุชุฎุฏุงู… ุงู„ู…ุฌู…ูˆุนุงุช ุงู„ู…ูุชูˆุญุฉ ู…ู† ุงู„ู†ู…ุทโ€ฌ.
๐‘–๐‘›๐‘‘๐‘‹, ๐ผ๐‘›๐‘‘๐‘‹, ๐‘‘๐‘–๐‘š๐‘‹ : โ€ซุงู„ูƒู„ู…ุงุช ุงู„ู…ูุชุงุญูŠุฉโ€ฌ
1. Introduction
Dimension theory starts with โ€œdimension functionโ€ which is a function defined on the
class of topological spaces such that ๐‘‘(๐‘‹) is an integer orโˆž, with the properties that ๐‘‘(๐‘‹) =
๐‘‘(๐‘Œ) if ๐‘‹ and ๐‘Œ are homeomorphism and ๐‘‘(๐‘… ๐‘› ) = ๐‘› for each positive integer ๐‘›. The dimension
functions taking topological spaces to the set{โˆ’1,0,1, โ€ฆ }. The dimension functions
๐‘–๐‘›๐‘‘, ๐ผ๐‘›๐‘‘, ๐‘‘๐‘–๐‘š, were investigated by [Pears ,1975]. Actually the dimension functions,
๐‘† โˆ’ ๐‘–๐‘›๐‘‘๐‘‹, ๐‘† โˆ’ ๐ผ๐‘›๐‘‘๐‘‹, ๐‘† โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ by using ๐‘† โˆ’ ๐‘œ๐‘๐‘’๐‘› sets were studied in [Raad Aziz Hussain ALAbdulla,1992], also the dimension functions, ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹, ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹, ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹, by using ๐‘ โˆ’
๐‘œ๐‘๐‘’๐‘› sets were studied in [Sama Kadhim Gabar,2010], and the dimension functions, ๐‘“ โˆ’
๐‘–๐‘›๐‘‘๐‘‹, ๐‘“ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹, ๐‘“ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹, by using ๐‘“ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets were studied in [Nedaa Hasan Hajee ,2011].
In this paper we recall the definitions of ind, Ind, dim, from [Pears ,1975], then the dimension
functions, ๐‘ โˆ’ ๐‘–๐‘›๐‘‘, ๐‘ โˆ’ ๐ผ๐‘›๐‘‘, ๐‘ โˆ’ ๐‘‘๐‘–๐‘š are introduced by using ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets. Finally some
relations between them are studied and some results relating these concepts are proved.
2. Preliminaries
In this section, we recall some of the basic definitions.
Definition 2.1[Omari, and Noorani,2009]: A sub set ๐ด of a space ๐‘‹ is said to
be an ๐‘ โˆ’
๐‘œ๐‘๐‘’๐‘› if for every ๐‘ โˆˆ ๐ด there exist an open sub set ๐‘ˆ๐‘ in ๐‘‹ such that ๐‘ˆ๐‘ โˆ’ ๐ด is a finite set. The
complement of an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set is said to be ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘.
Remark 2.2: 1. Every open set is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set.
2. Every closed set is an ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set.
The converse of (1) and (2) is not true in general as the following example shows:
Let ๐‘ be the set of integer numbers and ๐‘‡ be indiscrete topology on ๐‘, then ๐‘ โˆ’ {2,3} is an ๐‘ โˆ’
๐‘œ๐‘๐‘’๐‘› set, but its not an open set and ๐ต = {2,3} is an ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set, but not a closed set.
Remark 2.3: The family of all ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sub set of a space (๐‘‹, ๐‘‡) is denoted by ๐‘‡ ๐‘ .
Theorem 2.4[Omari, and Noorani,2009]: Let ๐‘‹ be a topological space, then ๐‘‹ with the set of
all ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sub set of ๐‘‹ is a topological space.
Corollary 2.5[Omari, and Noorani,2009]: Let ๐‘‹ be a topological space, then the intersection of
an open set and an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set.
595
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
Remark 2.6[Hamza and Majhool,2011]: Let ๐‘‹ be a space and ๐‘Œ be a sub space of ๐‘‹ such
that๐ด โІ ๐‘Œ, if ๐ด is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sub set in ๐‘‹ then ๐ด is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐‘Œ.
Proposition 2.7[Hamza and Majhool,2011]: 1. Let ๐‘‹ be a space and ๐‘Œ be an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› of ๐‘‹, if
๐ด is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐‘Œ then ๐ด is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐‘‹.
2. Let ๐‘‹ be a space and ๐‘Œ be a sub set of ๐‘‹ if ๐ต is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐‘‹ then ๐ต โˆฉ ๐‘Œ is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
in๐‘Œ.
Definition 2.8[Hashmiya Ibrahim Nasser,2012]: A space ๐‘‹ is called ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ if and only
if for each ๐‘ฅ โ‰  ๐‘ฆ in๐‘‹, there exists disjoint ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets ๐‘ˆ and ๐‘‰ such that ๐‘ฅ โˆˆ ๐‘ˆ, ๐‘ฆ โˆ‰
๐‘ˆ ๐‘Ž๐‘›๐‘‘ ๐‘ฆ โˆˆ ๐‘‰, ๐‘ฅ โˆ‰ ๐‘‰.
Remark 2.9: It is clear that every ๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ but the converse is not true in
general, as the following example shows: Let ๐‘‹ = {1,2,3}, ๐‘‡ = {๐‘‹, โˆ…, {1}, {2}, {1,2}}, the ๐‘ โˆ’
๐‘œ๐‘๐‘’๐‘› set is {๐‘‹, โˆ…, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}}, It is clear to see that ๐‘‹ is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ but is
not ๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’.
Proposition 2.10[Hashmiya Ibrahim Nasser,2012]: Let ๐‘‹ be a topological space, and then ๐‘‹
is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ if and only if {๐‘} is ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set for each ๐‘ โˆˆ ๐‘‹.
Definition 2.11[Hashmiya Ibrahim Nasser,2012]: A space ๐‘‹ is called ๐‘ โˆ’ ๐ป๐‘Ž๐‘ข๐‘ ๐‘‘๐‘œ๐‘Ÿ๐‘“๐‘“ if and
only if any two distinct points of ๐‘‹ has disjoint an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› neighborhoods.
Remark 2.12: Every ๐ป๐‘Ž๐‘ข๐‘ ๐‘‘๐‘œ๐‘Ÿ๐‘“๐‘“ space is ๐‘ โˆ’ ๐ป๐‘Ž๐‘ข๐‘ ๐‘‘๐‘œ๐‘Ÿ๐‘“๐‘“. But the convers is not true in
general.
Definition 2.13: A space ๐‘‹ is said to be ๐‘ โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space if and only if for each ๐‘ โˆˆ ๐‘‹ and ๐ถ
closed sub set such that๐‘ โˆ‰ ๐ถ, there exist disjoint ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets ๐‘ˆ, ๐‘‰ in ๐‘‹ such that ๐‘ โˆˆ ๐‘ˆ, ๐ถ โІ
๐‘‰.
Definition 2.14: A space ๐‘‹ is said to be ๐‘ โˆ— โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space if and only if for each ๐‘ โˆˆ ๐‘‹ and ๐ถ
๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sub set such that๐‘ โˆ‰ ๐ถ, there exist disjoint ๐‘œ๐‘๐‘’๐‘› sets ๐‘ˆ, ๐‘‰ in ๐‘‹ such that ๐‘ˆ open
set, ๐‘‰ is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set and ๐‘ โˆˆ ๐‘ˆ, ๐ถ โІ ๐‘‰.
Remark 2.15: 1. Every regular space is ๐‘ โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space but the convers is not true.
2. Every ๐‘ โˆ— โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space is ๐‘ โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space but the convers is not true.
As the following example shows: let ๐‘‹ = {1,2,3}, ๐‘‡ = {๐‘‹, โˆ…, {1}, {2}, {1,2}}, the ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set is
{๐‘‹, โˆ…, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}}, It is clear to see that ๐‘‹ is ๐‘ โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space, but ๐‘‹ is not
regular since {2,3} is closed set, 1 โˆ‰ {2,3} and there exist no disjoint two open set ๐‘ˆ, ๐‘‰ such that
1 โˆˆ ๐‘ˆ, {2,3} โІ ๐‘‰. Also ๐‘‹ is not ๐‘ โˆ— โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ, since {1,2} is ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set and 3 โˆ‰ {1,2}, but
there exist no disjoint open set ๐‘ˆ and ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘‰ such that 3 โˆˆ ๐‘ˆ, {1,2} โІ ๐‘‰.
Definition 2.16: A space ๐‘‹ is said to be ๐‘ โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ space if and only if for every disjoint
closed sets ๐ถ1 , ๐ถ2 there exist disjoint ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets ๐‘‰1 , ๐‘‰2 such that ๐ถ1 โŠ‚ ๐‘‰1 , ๐ถ2 โŠ‚ ๐‘‰2 .
Definition 2.17: A space ๐‘‹ is said to be ๐‘ โˆ— โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ space if and only if for every disjoint ๐‘ โˆ’
๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets ๐ถ1 , ๐ถ2 there exist disjoint ๐‘œ๐‘๐‘’๐‘› sets ๐‘‰1 , ๐‘‰2 such that ๐ถ1 โŠ‚ ๐‘‰1 , ๐ถ2 โŠ‚ ๐‘‰2 .
Definition 2.18: A space ๐‘‹ is said to be ๐‘ โˆ—โˆ— โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ space if and only if for every disjoint
๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets ๐ถ1 , ๐ถ2 there exist disjoint ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets ๐‘‰1 , ๐‘‰2 such that ๐ถ1 โŠ‚ ๐‘‰1 , ๐ถ2 โŠ‚ ๐‘‰2 .
Remark 2.19: 1. Every normal space is ๐‘ โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ but the convers is not true.
2. Every ๐‘ โˆ— โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ space is normal but the convers is not true.
Definition 2.20[N.Burbaki,1989]: A topological space ๐‘‹ is said to be compact if every open
cover of ๐‘‹ has a finite sub cover.
Definition 2.21[S.H.Hamza and F.M.Majhool,2011]: A topological space ๐‘‹ is said to be ๐‘ โˆ’
๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก if every ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› cover of ๐‘‹ has a finite sub cover.
596
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
Lemma 2.22[ Maheshwari, S.N.and Thakur,S.S., 1985]: 1. Every closed sub set of compact is
compact.
2. Every ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sub set of ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก is compact.
Definition 2.23: Let ๐‘‹ be a set and ๐ด a family of sub sets of ๐‘‹, by the order of the family ๐ด we
mean the largest integer ๐‘› such that the family ๐ด contains ๐‘› + 1 sets with a non-empty
intersection, if no such integer exists, we say that the family ๐ด has order โˆž. The order of a family
๐ด is denoted by ord ๐ด.
Definition 2.24: Let ๐‘‹ be a topological space the family ๐›ฝ of ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets is called a ๐‘ โˆ’
๐‘๐‘Ž๐‘ ๐‘’ if and only if for each ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set a union of members of a family ๐›ฝ.
Definition 2.25[S.H.Hamza and F.M.Majhool,2011]: Let X be a space and A โІ X. The
intersection of all N โˆ’ closed sets of X contained in A is called the N โˆ’ closure of A and is
ฬ…N .
denoted by A
3. On ๐’Š๐’๐’… by using ๐‘ต โˆ’ ๐’๐’‘๐’†๐’ sets
Definition 3.1: The ๐‘ โˆ’small inductive dimension of a space๐‘‹, ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹, is defined
inductively as follows. A space ๐‘‹ satisfies ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = โˆ’1 if and only if ๐‘‹ is empty. If ๐‘› is a
non-negative integer, then ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› means that for each point ๐‘ of ๐‘‹ and each open set ๐บ
such that ๐‘ โˆˆ ๐บ there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ such that ๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1.
We put ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = ๐‘› if it is true that ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, but it is not true that ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› โˆ’ 1.
If there exists no integer ๐‘› for which ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then we put ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = โˆž.
Definition 3.2: The ๐‘ โˆ— โˆ’small inductive dimension of a space๐‘‹, ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹, is defined
inductively as follows. A space ๐‘‹ satisfies ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = โˆ’1 if and only if ๐‘‹ is empty. If ๐‘› is a
non-negative integer, then ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› means that for each point ๐‘ of ๐‘‹ and each ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
set ๐บ such that ๐‘ โˆˆ ๐บ there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ such that ๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค
๐‘› โˆ’ 1. We put ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = ๐‘› if it is true that ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, but it is not true that ๐‘ โˆ— โˆ’
๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› โˆ’ 1. If there exists no integer ๐‘› for which ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then we put ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ =
โˆž.
Proposition 3.3: Let ๐‘‹ be a topological space. If ๐‘–๐‘›๐‘‘๐‘‹ is exists then ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘–๐‘›๐‘‘๐‘‹.
Proof: By induction on ๐‘›. It is clear ๐‘› = โˆ’1. Suppose that it is true for ๐‘› โˆ’ 1. Now suppose that
๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, let ๐‘ โˆˆ ๐‘‹ and ๐บ is an open set in ๐‘‹ such that ๐‘ โˆˆ ๐บ since
๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› , then there exists an open set ๐‘ˆ in ๐‘‹ such that ๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ and ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1 and
since every open set is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set then ๐‘ˆ is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set such that ๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ’
๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. Hence ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›.โˆŽ
Theorem 3.4: Let ๐‘‹ be a topological space, then ๐‘–๐‘›๐‘‘๐‘‹ = 0 if and only if ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0.
Proof: By proposition (3.3). If ๐‘–๐‘›๐‘‘๐‘‹ = 0 then ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค 0, and since ๐‘‹ โ‰  โˆ… then ๐‘ โˆ’
๐‘–๐‘›๐‘‘๐‘‹ = 0.
Now
Let ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0 and Let ๐‘ โˆˆ ๐‘‹ and each open set ๐บ โŠ‚ ๐‘‹ of the point ๐‘, since ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0
then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ โŠ‚ ๐‘‹ such that ๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค โˆ’1. Then
๐‘(๐‘ˆ) = โˆ…, therefore ๐‘ˆ is both open and closed, and thus ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) = โˆ’1. So that ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค 0 and
since ๐‘‹ โ‰  โˆ… then ๐‘–๐‘›๐‘‘๐‘‹ = 0. โˆŽ
Remark 3.5[A.P.Pears ,1975]: Let ๐‘‹ be a topological space with ๐‘–๐‘›๐‘‘๐‘‹ = 0 then ๐‘‹ is a regular
space.
Corollary 3.6: Let ๐‘‹ be a topological space, if ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0 then ๐‘‹ is a regular space.
Remark 3.7[A.P.Pears ,1975]: A space ๐‘‹ satisfies ๐‘–๐‘›๐‘‘๐‘‹ = 0 if and only if it is not empty and
has a base for its topology which consists of open and closed sets.
597
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
Corollary 3.8: A space ๐‘‹ satisfies ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0 if and only if it is not empty and has a base
for its topology which consists of open and closed sets.
Proposition 3.9[A.P.Pears ,1975]: For every sub space ๐ด of a space ๐‘‹, we have ๐‘–๐‘›๐‘‘๐ด โ‰ค ๐‘–๐‘›๐‘‘๐‘‹.
Theorem 3.10: For every sub space ๐ด of a space ๐‘‹ and ๐ด is open, we have
๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐ด โ‰ค ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹
Proof: By induction on ๐‘›. If ๐‘› = โˆ’1 then theorem is true. Suppose that the theorem is true for
๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› to prove ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐ด โ‰ค ๐‘›. Let ๐‘ โˆˆ ๐ด and ๐บ is an open set in ๐ด such
that ๐‘ โˆˆ ๐บ. Since ๐บ is open set in ๐ด then there exists ๐‘ˆ is an open set in ๐‘‹ such that ๐บ = ๐‘ˆ โˆฉ ๐ด.
Since ๐‘ โˆˆ ๐ด and ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘Š in ๐‘‹ such that ๐‘ โˆˆ ๐‘Š โŠ‚ ๐‘ˆ
and ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘Š) โ‰ค ๐‘› โˆ’ 1. Let ๐‘‰ = ๐‘Š โˆฉ ๐ด is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐ด, by proposition(2.7).
Thus ๐‘ โˆˆ ๐‘‰ = ๐‘Šโ‹‚๐ด โŠ‚ ๐‘ˆโ‹‚๐ด = ๐บ to prove ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘๐ด (๐‘‰) โ‰ค ๐‘› โˆ’ 1 ๐‘กโ„Ž๐‘’๐‘› ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐ด โ‰ค ๐‘›.
ฬ… โˆ’ ๐‘‰ โˆ˜ ) โˆฉ ๐ด = (๐‘Š
ฬ… โˆฉ ๐‘‰ โˆ˜โˆ ) โˆฉ ๐ด
๐‘๐ด (๐‘‰) โІ ๐‘(๐‘‰)โ‹‚๐ด = (๐‘‰ฬ… โˆ’ ๐‘‰ โˆ˜ )โ‹‚๐ด โŠ‚ (๐‘Š
ฬ… โˆฉ (๐‘Š โˆ˜โˆ โˆช ๐ดโˆ˜โˆ )] โˆฉ ๐ด = [(๐‘Š
ฬ… โˆฉ ๐‘Š โˆ˜โˆ ) โˆช (๐‘Š
ฬ… โˆฉ ๐ดโˆ˜โˆ )] โˆฉ ๐ด
= [๐‘Š
โˆ
โˆ
โŠ‚ (๐‘(๐‘Š) โˆช ๐ดโˆ˜ ) โˆฉ ๐ด = (๐‘(๐‘Š) โˆฉ ๐ด) โˆช (๐ดโˆ˜ โˆฉ ๐ด) โŠ‚ ๐‘(๐‘Š).
Thus ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘๐ด (๐‘‰) โ‰ค ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘Š). Since ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘Š) โ‰ค ๐‘› โˆ’ 1 then ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘๐ด (๐‘‰) โ‰ค
๐‘› โˆ’ 1 (By induction). Therefore ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐ด โ‰ค ๐‘›. โˆŽ
4. On ๐‘ฐ๐’๐’… by using ๐‘ต โˆ’ ๐’๐’‘๐’†๐’ sets
Definition 4.1: The ๐‘ โˆ’large inductive dimension of a space๐‘‹, ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹, is defined inductively
as follows. A space ๐‘‹ satisfies ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = โˆ’1 if and only if ๐‘‹ is empty. If ๐‘› is a non-negative
integer, then ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› means that for each closed set ๐ธ and each open set ๐บ of ๐‘‹ such that
๐ธ โŠ‚ ๐บ there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ such that ๐ธ โŠ‚ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. We put
๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = ๐‘› if it is true that ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, but it is not true that ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› โˆ’ 1. If there
exists no integer ๐‘› for which ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then we put ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = โˆž.
Definition 4.2: The ๐‘ โˆ— โˆ’large inductive dimension of a space๐‘‹, ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹, is defined
inductively as follows. A space ๐‘‹ satisfies ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = โˆ’1 if and only if ๐‘‹ is empty. If ๐‘› is a
non-negative integer, then ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› means that for each ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set ๐ธ and each open
set ๐บ of ๐‘‹ such that ๐ธ โŠ‚ ๐บ there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ such that ๐ธ โŠ‚ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ— โˆ’
๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. We put ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = ๐‘› if it is true that ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, but it is not true that
๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› โˆ’ 1. If there exists no integer ๐‘› for which ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then we put ๐‘ โˆ— โˆ’
๐ผ๐‘›๐‘‘๐‘‹ = โˆž.
Definition 4.3: The ๐‘ โˆ—โˆ— โˆ’large inductive dimension of a space๐‘‹, ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹, is defined
inductively as follows. A space ๐‘‹ satisfies ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = โˆ’1 if and only if ๐‘‹ is empty. If ๐‘› is a
non-negative integer, then ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› means that for each ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set ๐ธ and each ๐‘ โˆ’
๐‘œ๐‘๐‘’๐‘› set ๐บ of ๐‘‹ such that ๐ธ โŠ‚ ๐บ there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ such that ๐ธ โŠ‚ ๐‘ˆ โŠ‚ ๐บ and
๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. We put ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = ๐‘› if it is true that ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, but it is not
true that ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› โˆ’ 1. If there exists no integer ๐‘› for which ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then we
put ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = โˆž.
Proposition 4.4: Let ๐‘‹ be a topological space, if ๐ผ๐‘›๐‘‘๐‘‹ is exist then ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐ผ๐‘›๐‘‘๐‘‹.
Proof: By induction on ๐‘›. It is clear ๐‘› = โˆ’1. Suppose that it is true for ๐‘› โˆ’ 1. Now suppose that
๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, let ๐ถ be a ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in ๐‘‹ and ๐บ is an open set in ๐‘‹ such
that ๐ถ โŠ‚ ๐บ since ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› , then there exists an open set ๐‘ˆ in ๐‘‹ such that ๐ถ โŠ‚ ๐‘ˆ โŠ‚ ๐บ and
๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1 and since every open set is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set then ๐‘ˆ is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set such that
๐ถ โŠ‚ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. Hence ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›.โˆŽ
598
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
Proposition 4.5: Let ๐‘‹ be a topological space then:
1. If ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ is exist then ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹.
2. If ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ is exist then ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹.
Theorem 4.6: Let ๐‘‹ be a topological space, then ๐ผ๐‘›๐‘‘๐‘‹ = 0 if and only if ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0.
Proof: By proposition (4.5). If ๐ผ๐‘›๐‘‘๐‘‹ = 0 then ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค 0, and since ๐‘‹ โ‰  โˆ… then ๐‘ โˆ’
๐ผ๐‘›๐‘‘๐‘‹ = 0.
Now
Let ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0 and Let ๐น is closed set in ๐‘‹ and each open set ๐บ in ๐‘‹ such that ๐น โŠ‚ ๐‘ˆ. Since
๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0 then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ in ๐‘‹ such that ๐น โŠ‚ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ’
๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) = โˆ’1. Then ๐‘(๐‘ˆ) = โˆ…, therefore ๐‘ˆ is both open and closed, and thus ๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) = โˆ’1.
So that ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค 0 and since ๐‘‹ โ‰  โˆ… then ๐ผ๐‘›๐‘‘๐‘‹ = 0. โˆŽ
Remark 4.7[A.P.Pears ,1975]: Let ๐‘‹ be a topological space with ๐ผ๐‘›๐‘‘๐‘‹ = 0 then ๐‘‹ is a normal
space.
Corollary 4.8: Let ๐‘‹ be a topological space with ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0 then ๐‘‹ is a normal space.
Proof: It follows from theorem (4.6).
Remark 4.9[A.P.Pears ,1975]: A space ๐‘‹ satisfies ๐ผ๐‘›๐‘‘๐‘‹ = 0 if and only if it is non-empty and
has a base for its topology which consist of open and closed sets.
Corollary 4.10: A space ๐‘‹ satisfies ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0 if and only if it is non-empty and has a base
for its topology which consist of open and closed sets.
Proposition 4.11[A.P.Pears ,1975]:Let ๐‘‹ be a topological space, if ๐ด is a closed sub set of a
space ๐‘‹ we have ๐ผ๐‘›๐‘‘๐ด โ‰ค ๐ผ๐‘›๐‘‘๐‘‹.
Theorem 4.12: Let ๐‘‹ be a topological space, if ๐ด is a closed and open sub set of a space ๐‘‹, we
have
๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐ด โ‰ค ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹.
Proof: By induction on ๐‘›. If ๐‘› = โˆ’1 then theorem is true. Suppose that the theorem is true for
๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› to prove ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐ด โ‰ค ๐‘›. Let ๐น is a closed set in ๐ด and ๐บ is an open
set in ๐ด such that ๐น โŠ‚ ๐บ. Since ๐น is a closed set in ๐ด and ๐ด is a closed set in ๐‘‹ then ๐น is a
closed set in ๐‘‹. Since ๐บ is open set in ๐ด then there exists ๐‘ˆ is an open set in ๐‘‹ such that ๐บ =
๐‘ˆ โˆฉ ๐ด. Since ๐น โŠ‚ ๐‘ˆ and ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘Š in ๐‘‹ such that ๐น โŠ‚
๐‘Š โŠ‚ ๐‘ˆ and ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘Š) โ‰ค ๐‘› โˆ’ 1. Let ๐‘‰ = ๐‘Š โˆฉ ๐ด is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐ด, by proposition(2.7).
Thus ๐น โŠ‚ ๐‘‰ = ๐‘Šโ‹‚๐ด โŠ‚ ๐‘ˆโ‹‚๐ด = ๐บ
ฬ… โˆ’ ๐‘‰ โˆ˜ ) โˆฉ ๐ด = (๐‘Š
ฬ… โˆฉ ๐‘‰ โˆ˜โˆ ) โˆฉ ๐ด
๐‘๐ด (๐‘‰) โІ ๐‘(๐‘‰)โ‹‚๐ด = (๐‘‰ฬ… โˆ’ ๐‘‰ โˆ˜ )โ‹‚๐ด โŠ‚ (๐‘Š
ฬ… โˆฉ (๐‘Š โˆ˜โˆ โˆช ๐ดโˆ˜โˆ )] โˆฉ ๐ด = [(๐‘Š
ฬ… โˆฉ ๐‘Š โˆ˜โˆ ) โˆช (๐‘Š
ฬ… โˆฉ ๐ดโˆ˜โˆ )] โˆฉ ๐ด
= [๐‘Š
โˆ
โˆ
โŠ‚ (๐‘(๐‘Š) โˆช ๐ดโˆ˜ ) โˆฉ ๐ด = (๐‘(๐‘Š) โˆฉ ๐ด) โˆช (๐ดโˆ˜ โˆฉ ๐ด) โŠ‚ ๐‘(๐‘Š).
ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
๐‘๐ด (๐‘‰)๐‘(๐‘Š) = ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
๐‘๐ด (๐‘‰) โˆฉ ๐‘(๐‘Š) = ๐‘๐ด (๐‘‰) โˆฉ ๐‘(๐‘Š) = ๐‘๐ด (๐‘‰). ๐‘๐ด (๐‘‰) is closed set in ๐ด, since ๐ด is a
closed set in ๐‘‹ then ๐‘๐ด (๐‘‰) is a closed set in ๐‘(๐‘Š). Thus ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘๐ด (๐‘‰) โ‰ค ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘Š).
Since ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘Š) โ‰ค ๐‘› โˆ’ 1 then ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘๐ด (๐‘‰) โ‰ค ๐‘› โˆ’ 1 (By induction). Therefore ๐‘ โˆ’
๐‘–๐‘›๐‘‘๐ด โ‰ค ๐‘›. โˆŽ
5. On ๐’…๐’Š๐’Ž by using ๐‘ต โˆ’ ๐’๐’‘๐’†๐’ sets
Definition 5.1: The ๐‘ โˆ’covering dimension ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ of a topological space ๐‘‹ is the least
integer ๐‘› such that every finite open covering of ๐‘‹ has an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of order not
599
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
exceeding ๐‘› or is โˆž if there is no such integer. Thus ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = โˆ’1 if and only if ๐‘‹ is empty,
and ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› if each finite open covering of ๐‘‹ has ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of order not
exceeding ๐‘›. We have ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = ๐‘› if it is true that๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› but it is not true that ๐‘ โˆ’
๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› โˆ’ 1. Finally ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = โˆž if for every integer ๐‘› it is false that ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘›.
Definition 5.2: The ๐‘ โˆ— โˆ’covering dimension ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ of a topological space ๐‘‹ is the least
integer ๐‘› such that every finite ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› covering of ๐‘‹ has an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of order
not exceeding ๐‘› or is โˆž if there is no such integer. Thus ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = โˆ’1 if and only if ๐‘‹ is
empty, and ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› if each finite ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› covering of ๐‘‹ has ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of
order not exceeding ๐‘›. We have ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = ๐‘› if it is true that๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› but it is not
true that ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› โˆ’ 1. Finally ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = โˆž if for every integer ๐‘› it is false that
๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘›.
Proposition 5.3: Let ๐‘‹ be a topological space, if ๐‘‘๐‘–๐‘š๐‘‹ is exists then
๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘‘๐‘–๐‘š๐‘‹
Proof: By induction on ๐‘›. If ๐‘› = โˆ’1 then ๐‘‘๐‘–๐‘š๐‘‹ = โˆ’1 and ๐‘‹ = โˆ…, so that ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = โˆ’1.
Suppose statement is true for ๐‘› โˆ’ 1, now let ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› to prove ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘›.
Let ๐’ฐ = {๐‘ˆ1 , ๐‘ˆ2 , โ€ฆ , ๐‘ˆ๐‘˜ } be a finite open cover of ๐‘‹. Since ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› then ๐’ฐ has ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
refinement ๐’ฑ of ๐‘œ๐‘Ÿ๐‘‘๐‘’๐‘Ÿ โ‰ค ๐‘›. Hence ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘›.
Proposition 5.4: Let ๐‘‹ be a topological space, if ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ is exists then
๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹
Theorem 5.5: Let ๐‘‹ be a topological space, if ๐‘‹ has a base of sets which are both ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and
๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ then ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0, for a ๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ the converse is true.
Proof: Suppose ๐‘‹ has a base of sets which are both ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘. Let {๐‘ˆ๐‘– }๐พ
๐‘–=1 be a
finite open cover of ๐‘‹, it has an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement ๐‘Š, if ๐‘ค โˆˆ ๐‘Š then ๐‘Š โŠ‚ ๐‘ˆ๐‘– for some ๐‘–.
Let each ๐‘ค ๐‘–๐‘› ๐‘Š be associated with one of the sets ๐‘ˆ๐‘– containing it and let ๐‘‰๐‘– be the union of
those members of ๐‘Š thus associated with ๐‘ˆ๐‘– . Thus ๐‘‰๐‘– is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set and hence {๐‘‰๐‘– }๐พ
๐‘–=1 forms
disjoint ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of {๐‘ˆ๐‘– }๐พ
then
๐‘
โˆ’
๐‘‘๐‘–๐‘š๐‘‹
=
0.
๐‘–=1
Conversely
Suppose ๐‘‹ is ๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’such that ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0. Let ๐‘ โˆˆ ๐‘‹ and ๐บ be an open set in ๐‘‹ such
that ๐‘ โˆˆ ๐บ. Then {๐‘} is closed set and {๐บ, ๐‘‹ โˆ’ {๐‘}} is finite open cover of ๐‘‹ so it has an ๐‘ โˆ’
๐‘œ๐‘๐‘’๐‘› refinement of order 0. Let ๐ถ1 be the union of ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets in ๐บ and ๐ถ2 be the union of
the ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets in ๐‘‹ โˆ’ {๐‘}. Then ๐ถ1 โˆฉ ๐ถ2 = โˆ… , ๐ถ1 โˆช ๐ถ2 = ๐‘‹ and ๐ถ1 , ๐ถ2 are ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets
and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets in ๐‘‹. Thus ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in ๐‘‹ and hence ๐‘‹ has a base of sets which are
both ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets. โˆŽ
Theorem 5.6: Let ๐‘‹ be a topological space, if ๐‘‹ has ๐‘ โˆ’ ๐‘๐‘Ž๐‘ ๐‘’ of sets which are both ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ then ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0, for a ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ the converse is true.
Proof: Suppose ๐‘‹ has ๐‘ โˆ’ ๐‘๐‘Ž๐‘ ๐‘’ of sets which are both ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘. Let {๐‘ˆ๐‘– }๐พ
๐‘–=1
be a finite ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› cover of ๐‘‹, it has an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement ๐‘Š, if ๐‘ค โˆˆ ๐‘Š then ๐‘Š โŠ‚ ๐‘ˆ๐‘– for
some ๐‘–. Let each ๐‘ค ๐‘–๐‘› ๐‘Š be associated with one of the sets ๐‘ˆ๐‘– containing it and let ๐‘‰๐‘– be the
union of those members of ๐‘Š thus associated with ๐‘ˆ๐‘– . Thus ๐‘‰๐‘– is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set and hence
๐พ
โˆ—
{๐‘‰๐‘– }๐พ
๐‘–=1 forms disjoint ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of {๐‘ˆ๐‘– }๐‘–=1 then ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0.
Conversely
Suppose ๐‘‹ is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ such that ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0. Let ๐‘ โˆˆ ๐‘‹ and ๐บ be an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set in ๐‘‹
such that ๐‘ โˆˆ ๐บ. Then {๐‘} is closed set and {๐บ, ๐‘‹ โˆ’ {๐‘}} is finite ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› cover of ๐‘‹.
600
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
Since ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0 then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement {๐‘‰, ๐‘Š} of order 0. Such that
๐‘‰ โˆฉ ๐‘Š = โˆ… , โˆช ๐‘Š = ๐‘‹ , ๐‘‰ โŠ‚ ๐บ and ๐‘Š โŠ‚ ๐‘‹ โˆ’ {๐‘}. Then ๐‘‰ is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in
๐‘‹ such that ๐‘ โˆˆ ๐‘Š โˆ โˆˆ ๐‘‰ โŠ‚ ๐บ and hence ๐‘‹ has ๐‘ โˆ’ ๐‘๐‘Ž๐‘ ๐‘’ of ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets. โˆŽ
Remark 5.7[A.P.Pears ,1975]: Let ๐‘‹ be a topological space with ๐‘‘๐‘–๐‘š๐‘‹ = 0 then ๐‘‹ is a normal
space.
Theorem 5.8: Let ๐‘‹ be a topological space with ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0 then ๐‘‹ is ๐‘ โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ space.
Proof: Let ๐น1 and ๐น2 be disjoint closed sets of ๐‘‹, then {๐‘‹ โˆ– ๐น2 , ๐‘‹ โˆ– ๐น1 } is an open covering of ๐‘‹.
Since ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0 then it has ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of order 0, hence there exist ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
sets ๐ป and ๐บ such that ๐ป โˆฉ ๐บ = โˆ… , โˆช ๐บ = ๐‘‹ , ๐ป โŠ‚ ๐‘‹ โˆ– ๐น1 and ๐บ โŠ‚ ๐‘‹ โˆ– ๐น2 . Thus ๐น1 โІ ๐ป โˆ =
๐บ , ๐น2 โІ ๐บ โˆ = ๐ป and since ๐ป โˆฉ ๐บ = โˆ… then ๐‘‹ is ๐‘ โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘ ๐‘๐‘Ž๐‘๐‘’. โˆŽ
Theorem 5.9: Let ๐‘‹ be a topological space with ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0 then ๐‘‹ is ๐‘ โˆ—โˆ— โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™
space.
Proof: Let ๐น1 and ๐น2 be disjoint ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets of ๐‘‹, then {๐‘‹ โˆ– ๐น2 , ๐‘‹ โˆ– ๐น1 } is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
covering of ๐‘‹. Since ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0 then it has ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of order 0, hence there
exist ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› sets ๐ป and ๐บ such that ๐ป โˆฉ ๐บ = โˆ… , โˆช ๐บ = ๐‘‹ , ๐ป โŠ‚ ๐‘‹ โˆ– ๐น1 and ๐บ โŠ‚ ๐‘‹ โˆ– ๐น2 .
Thus ๐น1 โІ ๐ป โˆ = ๐บ , ๐น2 โІ ๐บ โˆ = ๐ป and since ๐ป โˆฉ ๐บ = โˆ… then ๐‘‹ is ๐‘ โˆ—โˆ— โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘ ๐‘๐‘Ž๐‘๐‘’. โˆŽ
Remark 5.10: Let ๐‘‹ = {๐‘Ž, ๐‘, ๐‘} , ๐‘‡ = {โˆ…, ๐‘‹, {๐‘Ž}, {๐‘}, {๐‘Ž, ๐‘}}.In example show that ๐‘‘๐‘–๐‘š๐‘‹ = ๐‘ โˆ’
๐‘‘๐‘–๐‘š๐‘‹ = 0. Since ๐‘‹ is the open cover of ๐‘‹ and its only refinement of it. Then ๐‘‘๐‘–๐‘š๐‘‹ = 0 and
since ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘‘๐‘–๐‘š๐‘‹ , ๐‘‹ โ‰  โˆ… then ๐‘‘๐‘–๐‘š๐‘‹ = ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ = 0.
Proposition 5.11[A.P.Pears ,1975]: Let ๐‘‹ be a topological space, if ๐ด is a closed sub set of a
space ๐‘‹ we have ๐‘‘๐‘–๐‘š๐ด โ‰ค ๐‘‘๐‘–๐‘š๐‘‹.
Theorem 5.12: Let ๐‘‹ be a topological space, if ๐ด is a closed and open sub set of a space ๐‘‹, we
have
๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐ด โ‰ค ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹
Proof: Suppose that ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› to prove ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐ด โ‰ค ๐‘›. Let {๐‘ˆ1 , ๐‘ˆ2 , โ€ฆ , ๐‘ˆ๐‘˜ } be an open
covering of ๐ด. Then for each ๐‘–, ๐‘ˆ๐‘– = ๐ดโ‹‚๐‘‰๐‘– , where ๐‘‰๐‘– is open set in ๐‘‹.
The finite open covering {๐‘‰1 , ๐‘‰2 , โ€ฆ , ๐‘‰๐‘˜ , ๐‘‹ โˆ– ๐ด} of ๐‘‹ has an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement ๐‘Š of order โ‰ค ๐‘›.
Let ๐‘‰ = {๐‘ค โˆฉ ๐ด: ๐‘ค โˆˆ ๐‘Š} where ๐‘ค โˆฉ ๐ด is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐ด by proposition(2.7).
Then ๐‘‰ is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement of {๐‘ˆ1 , ๐‘ˆ2 , โ€ฆ , ๐‘ˆ๐‘˜ } of orderโ‰ค ๐‘›. Thus ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐ด โ‰ค ๐‘›. โˆŽ
Theorem 5.13: Let ๐‘‹ be a topological space, if ๐ด is a closed and open sub set of a space ๐‘‹, we
have
๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐ด โ‰ค ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐‘‹
โˆ—
Proof: Suppose that ๐‘ โˆ’ ๐‘‘๐‘–๐‘š๐‘‹ โ‰ค ๐‘› to prove ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐ด โ‰ค ๐‘›. Let {๐‘ˆ1 , ๐‘ˆ2 , โ€ฆ , ๐‘ˆ๐‘˜ } be an ๐‘ โˆ’
๐‘œ๐‘๐‘’๐‘› covering of ๐ด. Then for each ๐‘–, ๐‘ˆ๐‘– = ๐ดโ‹‚๐‘‰๐‘– , where ๐‘‰๐‘– is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set in ๐‘‹.
The finite ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› covering {๐‘‰1 , ๐‘‰2 , โ€ฆ , ๐‘‰๐‘˜ , ๐‘‹ โˆ– ๐ด} of ๐‘‹ has an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› refinement ๐‘Š of
order โ‰ค ๐‘›. Let ๐‘‰ = {๐‘ค โˆฉ ๐ด: ๐‘ค โˆˆ ๐‘Š} where ๐‘ค โˆฉ ๐ด is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› in ๐ด. Then ๐‘‰ is an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
refinement of {๐‘ˆ1 , ๐‘ˆ2 , โ€ฆ , ๐‘ˆ๐‘˜ } of orderโ‰ค ๐‘›. Thus ๐‘ โˆ— โˆ’ ๐‘‘๐‘–๐‘š๐ด โ‰ค ๐‘›. โˆŽ
6. Relation between the dimensions ๐’Š๐’๐’… ๐’‚๐’๐’… ๐‘ฐ๐’๐’… by using ๐‘ต โˆ’ ๐’๐’‘๐’†๐’ sets
Proposition 6.1: Let ๐‘‹ be a topological space, if ๐‘‹ is ๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ then
๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹
Proof: By induction on n. If ๐‘› = โˆ’1 then the statement is true. Suppose that the statement is true
for ๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. Let ๐‘ โˆˆ ๐‘‹ and each open set ๐บ โŠ‚ ๐‘‹ of the
point ๐‘, since ๐‘‹ is ๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ then {๐‘} โІ ๐บ such that {๐‘} is closed set. Since ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›
601
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘‰ in ๐‘‹ such that ๐‘ โŠ‚ ๐‘‰ โŠ‚ ๐บ and ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘‰) โ‰ค ๐‘› โˆ’ 1.
Hence ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘‰) โ‰ค ๐‘› โˆ’ 1 and ๐‘ โˆˆ ๐‘‰ โŠ‚ ๐บ. Then ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. โˆŽ
Proposition 6.2: Let ๐‘‹ be a topological space, if ๐‘‹ is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ then
๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹
Proof: By induction on n. If ๐‘› = โˆ’1 then the statement is true. Suppose that the statement is true
for ๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. Let ๐‘ โˆˆ ๐‘‹ and each open set ๐บ โŠ‚ ๐‘‹ of
the point ๐‘, since ๐‘‹ is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ then {๐‘} โІ ๐บ such that {๐‘} is ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set. Since ๐‘ โˆ— โˆ’
๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘‰ in ๐‘‹ such that ๐‘ โŠ‚ ๐‘‰ โŠ‚ ๐บ and ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘‰) โ‰ค
๐‘› โˆ’ 1. Hence ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘‰) โ‰ค ๐‘› โˆ’ 1 and ๐‘ โˆˆ ๐‘‰ โŠ‚ ๐บ. Then ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. โˆŽ
Proposition 6.3: Let ๐‘‹ be a topological space, if ๐‘‹ is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ then
๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹
Proof: By induction on n. If ๐‘› = โˆ’1 then the statement is true. Suppose that the statement is true
for ๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. Let ๐‘ โˆˆ ๐‘‹ and each ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐บ โŠ‚
๐‘‹ of the point ๐‘, since ๐‘‹ is ๐‘๐‘‡1 โˆ’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ then {๐‘} โІ ๐บ such that {๐‘} is ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set.
Since ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘‰ in ๐‘‹ such that ๐‘ โŠ‚ ๐‘‰ โŠ‚ ๐บ and
๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘‰) โ‰ค ๐‘› โˆ’ 1. Hence ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘‰) โ‰ค ๐‘› โˆ’ 1 and ๐‘ โˆˆ ๐‘‰ โŠ‚ ๐บ. Then ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค
๐‘›. โˆŽ
Proposition 6.4: Let ๐‘‹ be a topological space, if ๐‘‹ is a regular space then
๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹
Proof: By induction on n. If ๐‘› = โˆ’1 then the statement is true. Suppose that the statement is true
for ๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. Let ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› and let ๐‘ โˆˆ ๐‘‹ and each
open set ๐บ โŠ‚ ๐‘‹ of the point ๐‘, since ๐‘‹ is a regular space then there exists an ๐‘œ๐‘๐‘’๐‘› set ๐‘‰ in ๐‘‹
such that๐‘ โˆˆ ๐‘‰ โŠ‚ ๐‘‰ฬ… โŠ‚ ๐บ.
Also.. Since ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› and ๐‘‰ฬ… is closed, ๐‘‰ฬ… โŠ‚ ๐บ then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐‘ˆ in ๐‘‹
such that ๐‘‰ฬ… โŠ‚ ๐‘ˆ โŠ‚ ๐บ and๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. Hence ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1 and ๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ
(by induction). Therefore ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. โˆŽ
Proposition 6.5: Let ๐‘‹ be a topological space, if ๐‘‹ is a ๐‘ โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space then
๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹
Proof: By induction on n. If ๐‘› = โˆ’1 then the statement is true. Suppose that the statement is true
for ๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. Let ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› and let ๐‘ โˆˆ ๐‘‹ and
each open set ๐บ โŠ‚ ๐‘‹ of the point ๐‘, since ๐‘‹ is ๐‘ โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
set ๐‘‰ in ๐‘‹ such that๐‘ โˆˆ ๐‘‰ โŠ‚ ๐‘‰ฬ… ๐‘ โŠ‚ ๐บ.
Also.. Since ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› and ๐‘‰ฬ… ๐‘ is ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ , ๐‘‰ฬ… ๐‘ โŠ‚ ๐บ then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set
๐‘ˆ in ๐‘‹ such that ๐‘‰ฬ… ๐‘ โŠ‚ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. Hence ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1 and
๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ (by induction). Therefore ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. โˆŽ
Proposition 6.6: Let ๐‘‹ be a topological space, if ๐‘‹ is a ๐‘ โˆ— โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space then
๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹
602
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
Proof: By induction on n. If ๐‘› = โˆ’1 then the statement is true. Suppose that the statement is true
for ๐‘› โˆ’ 1.
Now
Suppose that ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›, to prove ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. Let ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› and let ๐‘ โˆˆ ๐‘‹ and
each ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set ๐บ โŠ‚ ๐‘‹ of the point ๐‘, since ๐‘‹ is ๐‘ โˆ— โˆ’ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ space then there exists an
๐‘œ๐‘๐‘’๐‘› set ๐‘‰ in ๐‘‹ such that ๐‘ โˆˆ ๐‘‰ โŠ‚ ๐‘‰ฬ… ๐‘ โŠ‚ ๐บ.
Also.. Since ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ โ‰ค ๐‘› and ๐‘‰ฬ… ๐‘ is โˆ’๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ , ๐‘‰ฬ… ๐‘ โŠ‚ ๐บ then there exists an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set
๐‘ˆ in ๐‘‹ such that ๐‘‰ฬ… ๐‘ โŠ‚ ๐‘ˆ โŠ‚ ๐บ and ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1. Hence ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘(๐‘ˆ) โ‰ค ๐‘› โˆ’ 1 and
๐‘ โˆˆ ๐‘ˆ โŠ‚ ๐บ (by induction). Therefore ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ โ‰ค ๐‘›. โˆŽ
Theorem 6.7: Let ๐‘‹ be a topological space, if ๐‘‹ is a compact space and ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0 then
๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0.
Proof: Let ๐‘‹ is compact space such that๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0.
Let ๐น be a closed set of ๐‘‹ and ๐บ be an open set of ๐‘‹ such that ๐น โŠ‚ ๐บ.
Since๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0, for each ๐‘ โˆˆ ๐น there exist an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets ๐‘ˆ๐‘ such that
๐‘ โˆˆ ๐‘ˆ๐‘ โŠ‚ ๐บ hence๐น โŠ‚ โ‹ƒ๐‘โˆˆ๐น ๐‘ˆ๐‘ โŠ‚ ๐บ.
Since ๐น be a closed set in the compact space๐‘‹, ๐น is compact , hence there exist points
๐‘1 , ๐‘2 , โ€ฆ . . , ๐‘๐‘˜ of ๐น such that๐น โŠ‚ โ‹ƒ๐‘˜๐‘–=1 ๐‘ˆ๐‘๐‘– โŠ‚ ๐บ. Since โ‹ƒ๐‘˜๐‘–=1 ๐‘ˆ๐‘๐‘– is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ of
๐‘‹. It following that ๐‘ โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0. โˆŽ
Theorem 6.8: Let ๐‘‹ be a topological space, if ๐‘‹ is a ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space and ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0
then ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0.
Proof: Let ๐‘‹ be ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space such that๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0.
Let ๐น be an ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set of ๐‘‹ and ๐บ be an open set of ๐‘‹ such that ๐น โŠ‚ ๐บ.
Since๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0, for each ๐‘ โˆˆ ๐น there exist an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets ๐‘ˆ๐‘ such that
๐‘ โˆˆ ๐‘ˆ๐‘ โŠ‚ ๐บ hence๐น โŠ‚ โ‹ƒ๐‘โˆˆ๐น ๐‘ˆ๐‘ โŠ‚ ๐บ.
Since ๐น be an ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in the ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space๐‘‹, ๐น is ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space, hence
there exist points ๐‘1 , ๐‘2 , โ€ฆ . . , ๐‘๐‘˜ of ๐น such that๐น โŠ‚ โ‹ƒ๐‘˜๐‘–=1 ๐‘ˆ๐‘๐‘– โŠ‚ ๐บ. Since โ‹ƒ๐‘˜๐‘–=1 ๐‘ˆ๐‘๐‘– is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ of ๐‘‹. It following that ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0. โˆŽ
Theorem 6.9: Let ๐‘‹ be a topological space, if ๐‘‹ is a ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space and ๐‘ โˆ— โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0
then ๐‘ โˆ—โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0.
Proof: Let ๐‘‹ be ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space such that ๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0.
Let ๐น be an ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set of ๐‘‹ and ๐บ be an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› set of ๐‘‹ such that ๐น โŠ‚ ๐บ.
Since๐‘ โˆ’ ๐‘–๐‘›๐‘‘๐‘‹ = 0, for each ๐‘ โˆˆ ๐น there exist an ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets ๐‘ˆ๐‘ such that
๐‘ โˆˆ ๐‘ˆ๐‘ โŠ‚ ๐บ hence๐น โŠ‚ โ‹ƒ๐‘โˆˆ๐น ๐‘ˆ๐‘ โŠ‚ ๐บ.
Since ๐น be an ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in the ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space๐‘‹, ๐น is ๐‘ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก space, hence
there exist points ๐‘1 , ๐‘2 , โ€ฆ . . , ๐‘๐‘˜ of ๐น such that๐น โŠ‚ โ‹ƒ๐‘˜๐‘–=1 ๐‘ˆ๐‘๐‘– โŠ‚ ๐บ. Since โ‹ƒ๐‘˜๐‘–=1 ๐‘ˆ๐‘๐‘– is ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›
and ๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ of ๐‘‹. It following that ๐‘ โˆ— โˆ’ ๐ผ๐‘›๐‘‘๐‘‹ = 0. โˆŽ
References
AL-Omari, A. and M.S.Md.Noorani, 2009 โ€New characterizations of compact spacesโ€,
proceedings of 5๐‘กโ„Ž Asian Mathematical conference, Malaysia.
Atallah Themer AL-Ani, 1974 โ€œOn compactifiction, mapping and dimension
theoryโ€,Ph.D.Dissertation university of London, Queen Elizabeth college.
603
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015
Burbaki, N. 1989 โ€œElements of Mathematics; General Topologyโ€ Springer verlag , Berlin,
Hedelberg, New York, London, Paris, Tokyo, 2๐‘›๐‘‘ Edition. college of mathematics and
computer science.
Gemignani, M.C. 1967.โ€œElementary Topologyโ€, Reading, Mass: Addison- Wwsley Puplishing
Co.Inc. .
Hamza S.H. and F.M.Majhool, 2011 โ€On ๐‘ โˆ’ ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ ๐ด๐‘๐‘ก๐‘–๐‘œ๐‘›โ€,M.Sc., thesis university of ALQadisiya.
Hashmiya Ibrahim Nasser, 2012 โ€œOn some topological spaces by using ๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘› setโ€ M.Sc.
thesis university of AL-Qadisiya, college of mathematics and computer science.
Maheshwari, S.N.and Thakur,S.S. , 1985โ€On ๐›ผ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘๐‘ก ๐‘ ๐‘๐‘Ž๐‘๐‘’โ€, Bulletin of the Institute of
Mathematics, Academia sinica, Vol.13, No.4, Dec. 1985,341-347.
Navalagi, G.B. , 1991 โ€œDefintion Bank in General topologyโ€, (54) G .
Nedaa Hasan Hajee, 2011 โ€œOn Dimension Theorey By using Feebly open setโ€, M.Sc. thesis
university of AL-Qadisiya, college of mathematics and computer science.
Pears, A.P. 1975โ€œOn Dimension Theory of General Spacesโ€ Cambridge university press.
Pervin, N.J. 1964 โ€œFoundation of General Topologyโ€, Acadmic press, New York.
Raad Aziz Hussain AL-Abdulla, 1992 โ€œOn Dimension Theoryโ€, M.Sc. thesis university of
Baghdad, college of science.
Ryzard Engelking , 1989 โ€œGeneral topoplogyโ€, Berlin Heldermann.
Ryzard Engelking, 1978 โ€œDimension Theoryโ€.
Sama Kadhim Gaber , 2010 โ€œOn b-Dimension Theoryโ€, M.Sc. thesis university of AL-Qadisiya,
604