Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Polyatomic Gases Non-interacting, identical ⇒ Z = N1! Z1N Find Z1 Each molecule has # atoms ⇒ 3# position coordinates 3# = 3 C.M. + + (3# −3 − nr ) rotation nv , vibration nr 8.044 L14B1 MONATOMIC Xe DIATOMIC HS LINEAR TRI. CO2 NON-LINEAR TRI. H2 O 3 0 0 3 3 2 1 6 3 2 4 9 3 3 3 9 8.044 L14B2 C.M. Motion: Particle in a box ∆E s kT ⇒ classical Rotation: (H2 νrot = 3.65 × 1012 Hz → 175 K ) ⇒ Q.M. Vibration: (H2 νvib = 1.32 × 1014 Hz → 6, 320 K ) ⇒ Q.M. H = HCM + Hvib + Hrot ⇒ problem separates 8.044 L14B3 Vibration Hvib nv 1 1 Ki 2 2 = ȧi Ki ai + 2 2 ωi i=1 2 nv 1 dimensional harmonic oscillators, use Q.M. Ĥψn = nψn n = (n + 1 2 )h̄ω n = 0, 1, 2, · · · The energy levels are non-degenerate. 8.044 L14B4 −(n+ 1 hω/kT 2 )¯ p(n) = e ε ∞ / e−n/kT n=0 hω 7 2 hω 1 5 2 hω 1 3 2 hω 1 1 2 hω 1 ∞ −(n+ 1 hω/kT 2 )¯ e = −1 e 2 ¯hω/kT n=0 n ∞ ¯ /kT −hω e n=0 = ¯ p(n) = 1 − e−hω/kT 1 e− 2 ¯hω/kT / 1 e−¯hω/kT n ¯ − e−hω/kT = (1 − b)bn 8.044 L14B5 Geometric or Bose-Einstein p(n) n b 1 <n> = = ¯hω/kT 1−b e −1 → e−h̄ω/kT when kT h̄ω 8.044 L14B6 1 For kT h̄ω < n > → 2 h̄ω + 1 ¯ hω 1 + kT ··· − 1 2 kT h̄ω kT 1 kT 1 ≈ 1−2 = 1 ¯ hω h̄ω kT h̄ω 1 + 2 kT kT = −1 h̄ω 2 < >= (< n > + 1 2 )h̄ω → kT kT h̄ω (Classical) → 1 2 h̄ω kT h̄ω (Ground state) 8.044 L14B7 3 < ε> <n> 2 kT 1 1 2 0 -1 1 2 3 kT/h ω hω T 8.044 L14B8 ∂<> d<n> CV = N = N h̄ω ∂T dT V h̄ω = Nk kT 2 e¯hω/kT e h̄ω/kT h̄ω 2 −h̄ω/kT → Nk e kT −1 2 → Nk kT h̄ω (energy gap behavior) kT h̄ω 8.044 L14B9a CV /Nk 1 ENERGY GAP BEHAVIOR 2 LEVEL SYSTEM SHOWING SATURATION 1 2 kT/h ω 3 8.044 L14B9b High and low temperature behavior without solving the complete problem Consider first the high T limit. e - ε/ k T ∆ contains ∆ h̄ω states kT Z1 = ∞ hω ε e−n/kT n=0 ≈ ∞ 0 1 −E/kT kT ∞ −y kT e dE = e dy = ∝ β −1 h̄ω h̄ω 0 h̄ω 8.044 L14B10 Zvib = Z1N ∝ β −N Uvib 1 ∂Z =− = −β N (−N )β −N −1 = N kT Z ∂β N Cvib = N k Next, consider the low T limit. e - ε/ k T ⇒ consider only 2 states kT 1 2 hω 3 2 hω ε 8.044 L14B11 p(n = 1) ≈ −3 2 h̄ω/kT 1 e hω/kT −¯ = ≈ e 3 h̄ω/kT −1 − h̄ω/kT e¯hω/kT + 1 e 2 +e 2 p(n = 0) ≈ 1 − e−h̄ω/kT < E >= 12 N h̄ω 1 − e−¯hω/kT + 32 N ¯ hωe−¯hω/kT = 12 N ¯ hω + N h̄ωe−¯hω/kT 2 h̄ω ¯ hω ∂<E> −h̄ω/kT = N k −h̄ω/kT CV = = N h̄ω e e ∂T kT 2 kT 8.044 L14B12 Angular Momentum in 3 Dimensions θ, φ) CLASSICAL, 3 numbers: (Lx, Ly , Lz ); (|L|, QUANTUM, 2 numbers: magnitude and 1 component ˆ·L ˆψ 2ψ ˆ2 ψ ≡ L = l(l + 1)h̄ L l,m l,m l,m l = 0, 1, 2 · · · Lˆz ψl,m = mh̄ ψl,m m = l, l − 1,· · · − l 2l+1 values 8.044 L14B13 Specification: 2 numbers l & m → ψl,m or |l, m > Molecular rotation In general 1 2 1 2 1 2 L1 + L2 + L3 Hrot = 2I1 2I2 2I3 For a linear molecule 1 1 2 2 Hrot = (L1 + L2) = L·L 2I⊥ 2I⊥ I3 = 0 L3 = I3 θ˙3 = 0 I1 = I2 ≡ I⊥ 8.044 L14B214 Ĥrot 1 2 ˆ = L 2I⊥ Ĥrot |l, m > = l |l, m > ε/k 2 0 ΘR 9 l= 4 1 2 ΘR 7 l= 3 it is 2l + 1 fold degenerate. 6 ΘR 5 l= 2 l = kΘR l(l + 1) 2 ΘR 0 3 l= 1 l= 0 h2 ¯ = l(l + 1)|l, m > 2I⊥ l depends on l only; 1 ¯ h2 ΘR ≡ (rotational temp.) 2I⊥k 8.044 L14B15 1 −l(l+1)ΘR/T p(l, m) = e ZR ZR = e−l(l+1)ΘR/T l,m For T ΘR = (2l + 1)e−l(l+1)ΘR/T l ZR ≈ 1 + 3e−2ΘR/T = 1 + 3e−2ΘRkβ 1 ∂Z 6ΘR k e−2ΘRkβ −2ΘR /T < >= − = ≈ 6Θ k e R Z ∂β 1 + 3e−2ΘRkβ 8.044 L14B16 CV |rot ∂<> =N = 6ΘR N k ∂T = 3N k 2ΘR T 2 2ΘR −2ΘR/T e 2 T e−2ΘR/T (energy gap behavior) For T ΘR, convert the sum to an integral. ZR ≈ ∞ 0 (2l + 1)e−l(l+1)ΘR/T dl 8.044 L14B17 x ≡ (l2 + l)ΘR/T dx = (2l + 1)ΘR/T dl T ∞ −x T 1 ZR ≈ e dx = = β −1 ΘR 0 ΘR kΘR 1 ∂Z (−1)(−1)Z/β < >= − = = β −1 = kT Z ∂β Z CV |rot ∂<> =N → Nk ∂T (classical result) 8.044 L14B18a H = HCM + Hrot + Hvib CV (T ) = C | VCM all T + C | V rot appears at modest T + C | V vib only at highest T 8.044 L14B19a Raman Scattering BEFORE εi νi AFTER εf νf ∆ε = εf - εi = h( νi - νf ) FREQUENCY CHANGES IN THE SCATTERED LIGHT CORRESPOND TO ENERGY LEVEL DIFFERENCES IN THE SCATTERER. WHICH ENERGY LEVEL CHANGES OCCUR DEPEND ON SELECTION RULES GOVERNED BY SYMMETRY AND QUANTUM MECHANICS 8.044 L14B20 Example Rotational Raman Scattering Selection rule: ∆l = ±2 ∆νl↑ = −(kΘR/h)[(l + 2)(l + 3) − l(l + 1)] = −(4l + 6)(kΘR/h) ⇒ uniform spacing between lines of 4(kΘR/h) Il↑ ∝ number of molecules with angular momentum l ∝ (2l + 1)e−l(l+1)ΘR/T 8.044 L14B21 ROTATIONAL RAMAN SPECTRUM OF A DIATOMIC MOLECULE BOLTZMANN FACTOR I( ∆ν) LEVEL DEGENERACY ∆ν 4(k ΘR/ h ) 0 -6(k ΘR/ h ) 8.044 L14B22 MIT OpenCourseWare http://ocw.mit.edu 8.044 Statistical Physics I Spring 2013 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.