Download Quantum Mechanics Lecture 24 Dr. Mauro Ferreira

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Quantum Mechanics
Lecture 24
Dr. Mauro Ferreira
E-mail: [email protected]
Room 2.49, Lloyd Institute
Eigenfunctions
We need to rewrite Lx, Ly and Lz in spherical coordinates:
!ˆ !
ˆ
!
L = !r × ∇
i
!
ˆ
!
⇒ L=
i
!
where
∂
1 ∂
1
∂
!
∇ = r̂
+ θ̂
+ φ̂
∂r
r ∂θ
r sin θ ∂φ
∂
1 ∂
φ̂
− θ̂
∂θ
sin θ ∂φ
"
Rewriting the unit vectors θ̂ and φ̂ in spherical coordinates, we have
θ̂ = (cos θ cos φ) î + (cos θ sin φ) ĵ − (sin θ) k̂
φ̂ = − (sin φ) î + (cos φ) ĵ
!
!
∂
∂
L̂x =
− sin φ
− cos φ cot θ
i
∂θ
∂φ
!
"
!
∂
∂
L̂y =
cos φ
− sin φ cot θ
i
∂θ
∂φ
! ∂
L̂z =
i ∂φ
"
The raising and lowering operators become
L̂± = ±! e
±iφ
L̂+ L̂− = −!2
!
!
∂
∂
± i cot θ
∂θ
∂φ
"
2
∂2
∂
∂
∂
2
+ cot θ
+ cot θ 2 + i
∂θ2
∂θ
∂φ
∂φ
"
Finally, the operator L̂2 is written as
L̂ = −!
2
2
!
1 ∂
sin θ ∂θ
"
∂
sin θ
∂θ
#
1
∂
+
sin2 θ ∂φ2
2
$
The eigenvalue equations for L̂2 and L̂z become
2
L̂
f!m
= −!
L̂z f!m
2
!
1 ∂
sin θ ∂θ
"
∂
sin θ
∂θ
! ∂ m
=
f! = ! m f!m
i ∂φ
#
1
∂
+
sin2 θ ∂φ2
2
$
f!m = !2 $($ + 1) f!m
Remember lecture 18 ?
In general V (x, y, z) != V (x) + V (y) + V (z)
Typically V (!r) = V (r) (central potentials)
(Laplacian in spherical coordinates)
∇2 =
1 ∂
r2 ∂r
!
r2
∂
∂r
"
+
1
∂
r2 sin θ ∂θ
!
sin θ
∂
∂θ
"
1
r2 sin2 θ
+
!
2
∂
∂φ2
"
(Schroedinger equation in spherical coordinates)
!
!
1 ∂
−
2m r2 ∂r
2
"
r
2 ∂ψ
∂r
#
1
∂
+ 2
r sin θ ∂θ
"
∂ψ
sin θ
∂θ
#
1
+ 2
r sin2 θ
"
2
∂ ψ
∂φ2
#$
+ V ψ = Eψ
attempted solution: ψ(r, θ, φ) = R(r) Y (θ, φ)
−
!
!
Y ∂
2m r2 ∂r
2
"
r2
∂R
∂r
#
+
R
∂
r2 sin θ ∂θ
"
sin θ
∂Y
∂θ
#
+
R
r2 sin2 θ
2
−2mr
dividing by R Y an multiplying by
!2
"
2
∂ Y
∂φ2
#$
+ V RY = ERY
Lecture 18
!
1 d
R dr
"
r
2 dR
1
+
Y
dr
!
#
$
2mr
−
[V (r) − E]
!2
1 ∂
sin θ ∂θ
2
"
∂Y
sin θ
∂θ
#
function of r only
1 ∂ Y
+
sin2 θ ∂φ2
2
$
=0
function of θ and Φ only
Separating the variables...
(Radial ODE)
!
"
1 d
2mr2
2 dR
r
−
[V (r) − E] = !(! + 1)
2
R dr
dr
!
1
Y
!
(Angular PDE)
1 ∂
sin θ ∂θ
"
∂Y
sin θ
∂θ
#
1 ∂ Y
+
sin2 θ ∂φ2
2
$
separation constant
= −$($ + 1)
Lecture 18
Angular equation
1
Y
!
1 ∂
sin θ ∂θ
"
∂Y
sin θ
∂θ
#
1 ∂ Y
+
sin2 θ ∂φ2
2
$
= −$($ + 1)
multiplying by Y sin2 θ
∂
sin θ
∂θ
!
∂Y
sin θ
∂θ
"
∂2Y
2
+
=
−$($
+
1)
sin
θY
∂φ2
Separating the variables again: Y (θ, φ) = Θ(θ) Φ(φ)
!
"
#
$%
&
1
d
dΘ
1 d2 Φ
2
sin θ
sin θ
+ "(" + 1) sin θ +
=0
Θ
dθ
dθ
Φ dφ2
!
"
#$
1
d
dΘ
sin θ
sin θ
+ "(" + 1) sin2 θ = m2
Θ
dθ
dθ
1 d2 Φ
2
=
−m
Φ dφ2
Lecture 18
2
L̂
f!m
= −!
L̂z f!m
1
Y
!
2
!
1 ∂
sin θ ∂θ
"
∂
sin θ
∂θ
#
1
∂
+
sin2 θ ∂φ2
2
$
f!m = !2 $($ + 1) f!m
! ∂ m
=
f! = ! m f!m
i ∂φ
(Angular PDE)
1 ∂
sin θ ∂θ
"
∂Y
sin θ
∂θ
#
1 ∂ Y
+
sin2 θ ∂φ2
2
$
= −$($ + 1)
1 d2 Φ
2
=
−m
Φ dφ2
A simple comparison indicates that the eigenfunctions f!m are given
by the spherical harmonics Y!m (θ, φ).
CONCLUSION: Spherical harmonics are eigenfunctions of the
operators L̂2 and L̂z .
When solving the Schroedinger equation by separation of variables we
were inadvertently building simultaneous eigenfunctions of the three
commuting operators Ĥ, L̂2 and L̂z .
(Schroedinger equation in spherical coordinates)
!
!
1 ∂
−
2m r2 ∂r
2
"
r
2 ∂ψ
∂r
#
1
∂
+ 2
r sin θ ∂θ
can be simplified to
"
∂ψ
sin θ
∂θ
#
1
+ 2
r sin2 θ
"
2
∂ ψ
∂φ2
#$
+ V ψ = Eψ
!
"
#
$
1
2 ∂
2 ∂
2
−!
r
+
L̂
ψ+V ψ =Eψ
2
2mr
∂r
∂r
The only discrepancy is in the fact that the quantum numbers !
associated with eigenvalues of the angular momentum L̂2 may be
integer or half-integer whereas they were found to be integers by
solving the Schroedinger Eq. by separation of variables.
Spin angular momentum
Classically, a particle possess orbital and
! =L
!o + L
!s
spin angular momenta, i.e., L
In QM, in addition to their orbital angular momentum,
ˆ
!
elementary particles also carry an intrinsic momentum S
called spin (in analogy with classical mechanics)
Angular momentum commutation relations are still valid:
[Ŝx , Ŝy ] = i! Ŝz ; [Ŝy , Ŝz ] = i! Ŝx ; [Ŝz , Ŝx ] = i! Ŝy
Ŝ 2 |s, ms ! = !2 s(s + 1) |s, ms !
Ŝz |s, ms ! = ! ms |s, ms !
Ŝ± |s, ms ! = !
!
Defining Ŝ± ≡ Ŝx ± iŜy
s(s + 1) − ms (ms ± 1) |s, ms ± 1!
!s
L
The allowed values for the quantum numbers s and ms are
1
3
s = 0, , 1, , ...
2
2
and
ms = −s, −s + 1, ..., s − 1, s
Unlike the orbital degree of freedom, the spin of an elementary particle
is fixed, that is, s is constant. One very special case is for s=1/2, in
which case there are only two eigenstates:
1
1
and ms = −
ms = +
2
2
1 1
1 1
| , + ! and | , − "
2 2
2 2
1
1
| , ↑" and | , ↓"
2
2
| ↑ " and | ↓ "
Using these as a basis, the general state
of a spin-1/2 particle can be written as
a linear combination
|χ ! = a | ↑ ! + b | ↓ !
Related documents