Download presentation

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
The noise spectrum of a quantum dot
Eitan Rothstein
Netanel Gabdank
Ora Entin-Wohlman*
Amnon Aharony*
Physics Department, Ben Gurion University of the Negev
* Also at Tel Aviv University
Mesoscopic Physics
Meso = Intermidiate, in the middle.
Mesoscopic physics = A mesoscopic system is really like a large molecule,
but it is always, at least weakly, coupled to a much larger, essentially
infinite, system – via phonos, many body excitation, and so on. (Y. Imry,
Introduction to mesoscopic physics)
A naïve definition: Something very small coupled to something very large.
2/10
Mesoscopic Physics
3/10
Quantum dot
There are different types of quantum dots.
A large atom connecting to two ledas
A metallic grain on a surface
Voltage gates on 2DEG
4/10
The model
The model
Quantum-Dot (QD)
N∆
n
Vn , k
k
…
Left (L)
electronic
reservoir
Vn , p
∆
Right (R)
electronic
reservoir
p
-N∆
Vg
DC conductance
Noise spectrum
C ( )   dteit Iˆ(t )Iˆ(0)
I  GV
 I  ( IL  IR ) / 2

V   L   R
G 2 / e 2
Iˆ  Iˆ  Iˆ

 Iˆ  ( IˆL  IˆR ) / 2
F / 
5/10
2C ( ) / e2
No interaction
Hartree Fock
/
The model
The Hamiltonian
N
E
Hˆ    cˆ cˆ Vn,k (cˆ dˆn  h.c)    n dˆ dˆn  C (  dˆn† dˆn  N g ) 2
2 n
n N
 N









†
† ˆ
   p cˆ p cˆ p  Vn, p (cˆ p d n  h.c)
electronic
Hˆ QD charging energy
†
k k k
N
†
k
†
n
states on QD
momentum states in
R/L reservoirs
coupling
R/L reservoir-QD
Hartree Fock approximation
Hˆ effQD 
dˆn†dˆn dˆm† dˆm  dˆn†dˆn dˆm† dˆm  dˆm† dˆm dˆn†dˆn  dˆn†dˆm dˆm† dˆn  dˆm† dˆn dˆn†dˆm
N
ˆ †dˆ  E ( dˆ †dˆ  N )dˆ † dˆ  E
ˆ † dˆ dˆ †dˆ  [const .]

d
d
 n n n C nm n n
m m
C
m n
n m
n N
n m

 


Hartree
Fock
Self-consistent calculation
F
d n†d m   

dE

QD
1
Im[ E  H eff
 i]nm
 N nm
6/10
 /   (L  R ) / 
F / 
Level Occupancy and Effective Hamiltonian
The effective Hamiltonian
Hˆ effQD 
N
 ~ dˆ dˆ  V
n  N
†
n n n
n m
~ ˆ† ˆ
mn d n d m
~n   n  EC ( N mm  N nn  N g )

m
~

Vnm   EC N mn
Level Occupancy
N nn
Effective single-e energies
~n
 F  3.5
 F  3.5
(Hartree)
(Hartree)
EC
N nn ; N nm
* energy
scaled
with 
EC
~
~n ;Vnm
 F  3.5
(Hartree Fock)
 F  3.5
(Hartree Fock)
Hartree terms
Hartree terms
Fock terms
Fock terms
EC
EC
7/10
The Scattering Formalism
Treating the problem in the Landauer Büttiker formalism
Tight-Binding model
Current and correlations
 ( r  L, t )
scattering
states
QD 1
i 2nm [ E  H eff
]nm  L

S ( E )  1 
QD 1 
1  i nm [ E  H eff ]nm  R L
Iˆ (t ) Iˆ (t ' ) 
e2
(2 )2
Iˆ (t )Iˆ (t ' ) 
d 4E
  (2 )2
e2
(2 )2
L R 

R 
e
Iˆ (t ) 
2

S(E)
 ( r  R , t )
scattering
region
scattering
states
dEdE '
A  ( , E , E ' )aˆ † aˆ ei ( E  E ') t

2 
*
A ( , E, E ' )    S
( E )S ( E ' )
e
Ιˆ 
dE | S ( E ) |2 ( f  ( E )  f ( E ))

2
 A ( , E, E ' )A (  , E ' ' , E ' ' ' )aˆ ( E )aˆ ( E ' )aˆ ( E ' ' )aˆ ( E ' ' ' )e

†
†
A ( , E , E ' )A (  , E ' , E )  f ( E )(1  f ( E ' )) e
 d E 

2
8/10
i ( E  E ')( t t ')
(Landauer)
i ( E  E ' ) t i ( E ''  E ' '' ) t '
e
(Büttiker)
The noise spectrum
Noise spectrum
C ( )   dteit Iˆ(t )Iˆ(0)
Calculations performed for kBT  0 and L  R   F , so the noise given by
F
e2
C ( ) 
4
dE[2  r * ( E )r ( E   )  2t * ( E )t ( E   )  r '*( E )r ' ( E   )]

 
F

2C ( ) / e2
2C ( ) / e2
symmetric
L  R
symmetric
 F  0.5
L  R
 F   0 .2
EC  [0,1]
EC
EC  0.6
Hartree
No interaction
Hartree
Hartree Fock

2C ( ) / e
* energy
scaled
with 

2C ( ) / e2
2
symmetric
L  R
 F  0.5
asymmetric
EC  [0,1]
EC
R / L  9
 F   0 .2
EC  0.6
Hartree
Fock
No interaction
Hartree
Hartree Fock


9/10
Summary
“The noise is the signal” - R. Landauer
The noise spectrum exhibits steps and dips
o The steps
quantum dot resonances
o The dips
energy difference between the resonances
contain information on the coupling asymmetry
 The interaction effect
t
o Shifts levels to preserves neutrality
o Shifts noise steps and dips
 Fock effect
o Small quantitative effect – modifies the width of the levels
Thanks
10/10
Related documents