Download 02._ElementsOfEnsembleTheory

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
2.
Elements of Ensemble Theory
1. Phase Space of a Classical System
2. Liouville’s Theorem & Its Consequences
3. The Microcanonical Ensemble
4. Examples
5. Quantum States & the Phase Space
At equilibrium:
Each macrostate represents a huge number of microstates.

Observed values ~ time averaged over microstates.
Ensemble theory:
Ensemble average = Time average
2.1.
Phase Space of a Classical System
Hamiltonian formulism of mechanics:
Each dynamical state of a system of N particles is specified by 3N
position coordinates { qi }, and 3N momentum coordinates { pi },
i.e., by a point { qi , pi } in the 6N –D phase space of the system.
Time evolution of the system is described by a path in phase space satisfying
qi 
H
 pi
pi  
H
 qi
For a conservative system, its phase space
trajectory is restricted to the hypersurface
For a system in thermal equilibrium with a
heat reservoir, its phase space trajectory is
restricted to the “hypershell”
i  1,2,
,3N
H  qi , pi   E
H  qi , pi    E  E , E  E

Ensemble of a system:
Set of identical copies of a system that includes every distinct state that satisfies
the given boundary conditions and gives rise to the given macrostate.
In the thermodynamical limit ( N, V   , N / V = finite ) ,
the phase points of the ensemble form a continuum.
The ensemble average of a dynamical function f is given by
f
d


3N
q  d 3 N p f  q, p    q, p, t 
d
3N
q d
An ensemble is stationary if
3N
p   q, p, t 

0
t

 = density function
 f  is t – indep.
Ensemble of a system in equilibrium must be stationary.
Liouville’s Theorem & Its Consequences
2.2.
d   qi , pi , t   
 
  H   H 
 


 
qi 
pi  
 


dt
t

q

p

t

q

p

p

q
i 
i 
i
i
i
i
i
i 


d  

  , H
dt
t

  f H  f H 
f
,
H



 

 pi  qi 
i   qi  pi
where the Poisson bracket is defined as :
# of phase points are conserved
Liouville’s theorem

d
0
dt
The current density of phase points is a 6N-D vector
j v
v   qi , pi 
j v

v   qi , pi 
   qi   pi 
 
 

q

pi   
  j  

 
i
 pi 
 pi 
i   qi
i   qi
where
  qi  pi
i   q   p
i
 i
  qi  pi 
i   q   p     , H
i 
 i

  H
 H 

  
0
 i   qi  pi  pi  qi 
Hence, the Liouville eq. is just the equation of continuity of the phase points :
d  

  j  0
dt
t

0
For a system in equilibrium
t

  H  H 

 , H    
0

q

p

p

q
i 
i
i
i
i 

  H  H 

 , H    
0

q

p

p

q
i 
i
i
i
i 
Solution 1:
 q, p   
 const
 0
  q, p   
otherwise
  region of acceptible microstates in phase space.
Principle of equal a priori probability :
Solution 2:

1


d 3 N q d 3 N p f  q, p  Microcanonical
ensemble
  q, p     H  q, p  
 , H   
i
Chap 3:
f 
d   H H H H 


0
d H   qi  pi  pi  qi 

H 

kT


  q, p   exp  
Canonical
ensemble
2.3.
 const
  q, p   
 0
The Microcanonical Ensemble
1.   Hypersurface
 q, p   
H  q, p   E
H  q, p   E 
2.   Hypershell
otherwise
 f   ensemble average of f
= time average of  f 
for systems in eqm.
=  time average of f 
2 av are indep
= long time average of f over 1 ensemble member
= f measured
Let 0  fundamental volume of one microstate.
S  k ln   k ln

0
Then   
0
1

2
2.4.
Examples
   d 3N q d 3N   q, p    d 3 N q d 3 N p
Microcanonical

Classical ideal gas:
 d
 d
3N
3N
q V N
p
3N
pr2

E

2m
2
r 1

Surface area of an n-D sphere (App.C) is
R  2mE


d 3N
d 3N p  
2 mE 

yr2
 m
d 3N y
r 1
2  n /2
Sn  R  
R n 1
  n / 2
1 
1 


R  2m  E     2m  E   
2 
2 


2  3 N /2
 3 N 1 /2 
p
2
mE



  3N / 2 

3N
E 

2m 

E

2m
N  2 mE 
 V
  3N / 2 
3 N /2


E
 2 mE 
 V N
  3N / 2 
3 N /2
Sec 1.4 :

E
3N     V 

  
2  E   h3 
N
 2 mE 
 3N / 2  !
3 N /2

Volume of state per degree of freedom = h
0 


 h3N
Single Free Particle Confined to V
1  P  
1  p  
P2
E
2m
p2

2m
1
1 4 3
3
3
d
q
d
p

V
P
3 
3

p

P
h
h
3
d 1
dp


p 
1
2
V
4

p
p  g  p  p
3
h
1  E  
1    
V 4
3/2
2
mE


h3 3
d 1
2 V
  3  2m 3/2  1/2   a   
d
h
Simple Harmonic Oscillator
p2 1 2
H
 kq
2m 2

q  A cos  t   
k
m

p  m  A sin  t   
E

q2
p2

1
2
2
A  m  A
1
m  2 A2
2

q2
p2

1
2
2E / m 
2mE
2E
m 2
2mE 
1  E  

1    
d 1


 

d


h
Ellipse
E

 n    n  
2
1


2.5.
Quantum States & the Phase Space
Phase space volume of 1 quantum state may
be estimated from the uncertainty principle:
Among the first to suggest 0 


 h DoF are Tetrode, Sackur, & Bose.
p
Bose (black-body radiation) :
q p 
h
c
for photons
2
4

h

h

3




   d q  d p  V 4

      h V c 3 
 c   c 
3
3
2
4 2
Cf. Rayleigh’s number of modes V

3
c

0  h 3
Caution: Above formulae consider only a single polarization component.
Related documents