Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
The nuclear shell model
P. Van Isacker, GANIL, France
Context and assumptions of the model
Symmetries of the shell model:
Racah’s SU(2) pairing model
Wigner’s SU(4) symmetry
Elliott’s SU(3) model of rotation
IAEA Workshop on NSDD, Trieste, November 2003
Overview of nuclear models
• Ab initio methods: Description of nuclei
starting from the bare nn & nnn interactions.
• Nuclear shell model: Nuclear average potential
+ (residual) interaction between nucleons.
• Mean-field methods: Nuclear average potential
with global parametrization (+ correlations).
• Phenomenological models: Specific nuclei or
properties with local parametrization.
IAEA Workshop on NSDD, Trieste, November 2003
Ab initio methods
• Faddeev-Yakubovsky: A≤4
• Coupled-rearrangement-channel Gaussianbasis variational: A≤4 (higher with clusters)
• Stochastic variational: A≤7
• Hyperspherical harmonic variational:
• Green’s function Monte Carlo: A≤7
• No-core shell model: A≤12
• Effective interaction hyperspherical: A≤6
IAEA Workshop on NSDD, Trieste, November 2003
Benchmark calculation for A=4
• Test calculation with realistic interaction: all
4
methods agree.
r r
k l
kl
• But Eexpt=-28.296 MeV need for threenucleon interaction.
H. Kamada et al., Phys. Rev. C 63 (2001) 034006
IAEA Workshop on NSDD, Trieste, November 2003
Basic symmetries
• Non-relativistic Schrödinger equation:
A
2
k
A
A
p
H
W2 k ,l W3 k , l ,m
k 1 2m k
kl
k l m
k
rk , k ,k ,
pk i k
• Symmetry or invariance under:
–
–
–
–
Translations linear momentum P
Rotations angular momentum J=L+S
Space reflection parity
Time reversal
IAEA Workshop on NSDD, Trieste, November 2003
Nuclear shell model
• Separation in mean field + residual interaction:
A
A
p2k
H
W k , l
k 1 2m k
k l
A
pk2
A
V k Wk ,l V k
k 1 2mk
k l
k 1
A
mean fi eld
resi dual interaction
• Independent-particle assumption. Choose V
and neglect residual interaction:
pk2
H HIP
V k
k 1 2mk
A
IAEA Workshop on NSDD, Trieste, November 2003
Independent-particle shell model
• Solution for one particle:
pk2
V k i k Ei i k
2mk
k r , ,
i
i
k
k
• Solution for many particles:
i i
1 2
A
iA
1,2, , A i k
HIPi1 i2
k1
k
A
, A Eik i 1i2
i A 1, 2,
k 1
iA
1, 2, , A
IAEA Workshop on NSDD, Trieste, November 2003
k
Independent-particle shell model
• Antisymmetric solution for many particles
(Slater determinant):
i i
1 2
iA
1,2, , A
i 1 i 2
1 i 1 i 2
1
1
2
2
i A
i A
1
2
A!
i 1 i 2
A
i A
A
A
• Example for A=2 particles:
1
i1i2 1,2
i1 1i 2 2 i1 2i2 1
2
IAEA Workshop on NSDD, Trieste, November 2003
Hartree-Fock approximation
• Vary i (ie V) to minize the expectation value
of H in a Slater determinant:
*
ii
1 2
*
ii
1 2
1, 2, , AHi i i 1,2, ,A d1d2 dA
0
, A i i i 1, 2, , Ad1 d2 d A
i 1,2,
iA
1 2
A
1 2
A
A
• Application requires choice of H. Many global
parametrizations (Skyrme, Gogny,…) have
been developed.
IAEA Workshop on NSDD, Trieste, November 2003
Poor man’s Hartree-Fock
• Choose a simple, analytically solvable V that
approximates the microscopic HF potential:
pk2 1
2 2
2
HIP m rk ls lk sk ll lk
2
k 1 2m
A
• Contains
– Harmonic oscillator potential with constant .
– Spin-orbit term with strength ls.
– Orbit-orbit term with strength ll.
• Adjust , ls and ll to best reproduce HF.
IAEA Workshop on NSDD, Trieste, November 2003
Energy levels of harmonic oscillator
• Typical parameter
values:
41 A
1/ 3
MeV
ls
2
20 A 2 / 3 MeV
ll
2
0.1 MeV
b 1.0 A 1/ 6 fm
• ‘Magic’ numbers at 2, 8,
20, 28, 50, 82, 126,
184,…
IAEA Workshop on NSDD, Trieste, November 2003
Evidence for shell structure
• Evidence for nuclear shell structure from
–
–
–
–
–
Excitation energies in even-even nuclei
Nucleon-separation energies
Nuclear masses
Nuclear level densities
Reaction cross sections
• Is nuclear shell structure modified away from
the line of stability?
IAEA Workshop on NSDD, Trieste, November 2003
Shell structure from Ex(21)
• High Ex(21) indicates stable shell structure:
IAEA Workshop on NSDD, Trieste, November 2003
Shell structure from Sn or Sp
• Change in slope of Sn (Sp) indicates neutron
(proton) shell closure (constant N-Z plots):
A. Ozawa et al., Phys. Rev. Lett. 84 (2000) 5493
IAEA Workshop on NSDD, Trieste, November 2003
Shell structure from masses
• Deviations from Weizsäcker mass formula:
IAEA Workshop on NSDD, Trieste, November 2003
Shell structure from masses
• Deviations from improved Weizsäcker mass
formula that includes nn and n+n terms:
IAEA Workshop on NSDD, Trieste, November 2003
Validity of SM wave functions
• Example: Elastic electron
scattering on 206Pb and
205Tl, differing by a 3s
proton.
• Measured ratio agrees
with shell-model
prediction for 3s orbit
with modified occupation.
QuickTi me™ et un décompresseur TI FF (non com pres sé) sont requi s pour vi sionner cet te im age.
J.M. Cavedon et al., Phys. Rev. Lett. 49 (1982) 978
IAEA Workshop on NSDD, Trieste, November 2003
Nuclear shell model
• The full shell-model hamiltonian:
pk2
A
H V k VRI k ,l
k l
k 1 2m
A
• Valence nucleons: Neutrons or protons that are
in excess of the last, completely filled shell.
• Usual approximation: Consider the residual
interaction VRI among valence nucleons only.
• Sometimes: Include selected core excitations
(‘intruder’ states).
IAEA Workshop on NSDD, Trieste, November 2003
The shell-model problem
• Solve the eigenvalue problem associated with
the matrix (n active nucleons):
n
i1 in VRI k ,l i1
kl
in
1
n i1
in i1
in
1 n
• Methods of solution:
–
–
–
–
Diagonalization (Strasbourg-Madrid): 109
Monte-Carlo (Pasadena-Oak Ridge):
Quantum Monte-Carlo (Tokyo):
Group renormalization (Madrid-Newark): 10120
IAEA Workshop on NSDD, Trieste, November 2003
Residual shell-model interaction
• Four approaches:
– Effective: Derive from free nn interaction taking
account of the nuclear medium.
– Empirical: Adjust matrix elements of residual
interaction to data. Examples: p, sd and pf shells.
– Effective-empirical: Effective interaction with
some adjusted (monopole) matrix elements.
– Schematic: Assume a simple spatial form and
calculate its matrix elements in a harmonicoscillator basis. Example: interaction.
IAEA Workshop on NSDD, Trieste, November 2003
Schematic short-range interaction
• Delta interaction in harmonic-oscillator basis.
• Example of 42Sc21 (1 active neutron + 1 active
proton):
IAEA Workshop on NSDD, Trieste, November 2003
Symmetries of the shell model
• Three bench-mark solutions:
– No residual interaction IP shell model.
– Pairing (in jj coupling) Racah’s SU(2).
– Quadrupole (in LS coupling) Elliott’s SU(3).
• Symmetry triangle:
pk2 1
2 2
2
HIP m rk ls lk sk ll lk
2
k 1 2m
A
A
VRI k , l
k l
IAEA Workshop on NSDD, Trieste, November 2003
Racah’s SU(2) pairing model
• Assume large spin-orbit splitting ls which
implies a jj coupling scheme.
• Assume pairing interaction in a single-j shell:
1
2 j 1g, J 0
2
2
2
j JM J Vpairi ng j JM J
0,
J0
• Spectrum of 210Pb:
IAEA Workshop on NSDD, Trieste, November 2003
Solution of pairing hamiltonian
• Analytic solution of pairing hamiltonian for
identical nucleons in a single-j shell:
n
j n J Vpairing k , l j n J 14 Gn 2j n 3
k l
• Seniority (number of nucleons not in pairs
coupled to J=0) is a good quantum number.
• Correlated ground-state solution (cfr. superfluidity in solid-state physics).
G. Racah, Phys. Rev. 63 (1943) 367
IAEA Workshop on NSDD, Trieste, November 2003
Pairing and superfluidity
• Ground states of a pairing hamiltonian have
superfluid character:
n /2
S
o
– Even-even nucleus (=0):
n /2
a
S
– Odd-mass nucleus (=1): j o
j
j
• Nuclear superfluidity leads to
– Constant energy of first 2+ in even-even nuclei.
– Odd-even staggering in masses.
– Two-particle (2n or 2p) transfer enhancement.
IAEA Workshop on NSDD, Trieste, November 2003
Superfluidity in semi-magic nuclei
• Even-even nuclei:
– Ground state has
=0.
– First-excited state has
=2.
– Pairing produces
constant energy gap:
Ex 21
2j 1g
• Example of Sn
nuclei:
1
2
IAEA Workshop on NSDD, Trieste, November 2003
Two-nucleon separation energies
• Two-nucleon separation energies S2n:
(a) Shell splitting dominates over interaction.
(b) Interaction dominates over shell splitting.
(c) S2n in tin isotopes.
IAEA Workshop on NSDD, Trieste, November 2003
Generalized pairing models
• Trivial generalization from a single-j shell to
several degenerate j shells:
S
1
2
j
0
2j 1 a j a j
0
• Pairing with neutrons and protons:
– T=1 pairing: SO(5).
– T=0 & T=1 pairing: SO(8).
• Non-degenerate shells:
– Talmi’s generalized seniority.
– Richardson’s integrable pairing model.
IAEA Workshop on NSDD, Trieste, November 2003
Pairing with neutrons and protons
• For neutrons and protons two pairs and hence
two pairing interactions are possible:
– Isoscalar (S=1,T=0):
S10 S10 , S10 l 12 al1 1 al1 1
22
22
– Isovector (S=0,T=1):
010
S01 S01 , S01 l 21 al1 1 al1 1
22
2 2
,
S S
,
S S
001
IAEA Workshop on NSDD, Trieste, November 2003
10
10
01
01
Superfluidity of N=Z nuclei
• Ground state of a T=1 pairing hamiltonian for
identical nucleons is superfluid, (S+)n/2o.
• Ground state of a T=0 & T=1 pairing
hamiltonian with equal number of neutrons
and protons has different superfluid character:
cos S
10
01
01 n / 4
S sin S S
10
o
• Condensate of ’s ( depends on g0/g1).
• Observations:
– Isoscalar component in condensate survives only
in N~Z nuclei, if anywhere at all.
– Spin-orbit term reduces isoscalar component.
IAEA Workshop on NSDD, Trieste, November 2003
Wigner’s SU(4) symmetry
• Assume the nuclear hamiltonian is invariant
under spin and isospin rotations:
H
nucl
,S Hnucl,T Hnucl,Y 0
A
A
A
k 1
k 1
k 1
S s k , T t k , Y s k t k
• Since {S,T,Y} form an SU(4) algebra:
– Hnucl has SU(4) symmetry.
– Total spin S, total orbital angular momentum L,
total isospin T and SU(4) labels () are
conserved quantum numbers.
E.P. Wigner, Phys. Rev. 51 (1937) 106
F. Hund, Z. Phys. 105 (1937) 202
IAEA Workshop on NSDD, Trieste, November 2003
Physical origin of SU(4) symmetry
• SU(4) labels specify the separate spatial and
spin-isospin symmetry of the wavefunction:
• Nuclear interaction is short-range attractive
and hence favours maximal spatial symmetry.
IAEA Workshop on NSDD, Trieste, November 2003
Breaking of SU(4) symmetry
• Breaking of SU(4) symmetry as a consequence
of
– Spin-orbit term in nuclear mean field.
– Coulomb interaction.
– Spin-dependence of residual interaction.
• Evidence for SU(4) symmetry breaking from
– Masses: rough estimate of nuclear BE from
BN, Z a bg a b C2SU4
– decay: Gamow-Teller operator Y,1 is a
generator of SU(4) selection rule in ().
IAEA Workshop on NSDD, Trieste, November 2003
SU(4) breaking from masses
• Double binding energy difference Vnp
VnpN,Z 14 BN,Z BN 2,Z BN,Z 2 BN 2, Z 2
• Vnp in sd-shell nuclei:
P. Van Isacker et al., Phys. Rev. Lett. 74 (1995) 4607
IAEA Workshop on NSDD, Trieste, November 2003
SU(4) breaking from decay
• Gamow-Teller decay into odd-odd or eveneven N=Z nuclei:
P. Halse & B.R. Barrett, Ann. Phys. (NY) 192 (1989) 204
IAEA Workshop on NSDD, Trieste, November 2003
Elliott’s SU(3) model of rotation
• Harmonic oscillator mean field (no spin-orbit)
with residual interaction of quadrupole type:
pk2 1
2 2
H m rk Q Q,
2
k 1 2m
A
Q
A
A
4
rk2 Y2 ˆrk pk2Y2 ˆpk
5 k 1
k 1
J.P. Elliott, Proc. Roy. Soc. A 245 (1958) 128; 562
IAEA Workshop on NSDD, Trieste, November 2003
Importance and limitations of SU(3)
• Historical importance:
– Bridge between the spherical shell model and the
liquid droplet model through mixing of orbits.
– Spectrum generating algebra of Wigner’s SU(4)
supermultiplet.
• Limitations:
– LS (Russell-Saunders) coupling, not jj coupling
(zero spin-orbit splitting) beginning of sd shell.
– Q is the algebraic quadrupole operator no
major-shell mixing.
IAEA Workshop on NSDD, Trieste, November 2003
Generalized SU(3) models
• How to obtain rotational features in a jjcoupling limit of the nuclear shell model?
• Several efforts since Elliott:
–
–
–
–
–
Pseudo-spin symmetry.
Quasi-SU(3) symmetry (Zuker).
Effective symmetries (Rowe).
FDSM: fermion dynamical symmetry model.
...
IAEA Workshop on NSDD, Trieste, November 2003