Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Spin Dependent Electron Transport in Nanostructures A. Ali Yanik† Dissertation †Department of Physics & Network for Computational Nanotechnology Purdue University, West Lafayette, IN 47907 April 2007 5/24/2017 A. Ali Yanik, Purdue University 1 Spin + Electronics = Spintronics 5/24/2017 A. Ali Yanik, Purdue University 2 Spintronic Devices Field Controlled Spintronics Devices: Spin-FET (Datta), etc.. Magnetoelectronics Devices: GMR (read heads), TMR (MRAM), BMR Devices, etc.. Contact Injection/Detection Gate Contact External B Field Spin Dephasing Gate Voltage Control / Rashba Effect FM Gate FM 2DEG S. Datta & B. Das, APL. 56, 665 (1990) 5/24/2017 Non volatile RAM, Freescale,2006 A. Ali Yanik, Purdue University 3 Motivation-I Concepts Devices Physics Community Engineering Community Spin Decoherence + QM Transport + QM Equilibrium Non-Equilibrium Decoherence Physics Quantum Transport NEGF Formalism Ph.D. Thesis: First formalized treatment of Quantum-Transport with Spin-Decoherence in NEGF 5/24/2017 A. Ali Yanik, Purdue University 4 Motivation-II NEGF FORMALISM (Inelastic Transport) Ballistic Transport / NEGF FORMALISM Electron-phonon relaxation time Contacts el Channel Electrons sl es Challenges: State of Art Modelling NON-EQUILIBRIUM TRANSPORT Physics Based Unified Treatment (not specialized device, geometry, etc) Averagingfor ofeach Coherent Processes EQUILIBRIUM PHYSICS Conservation Laws (angular Doesn’t Capture the Physicsmomentum, total energy, particles) Not straightforward to include dissipative interactions Numerically Treatable Phonons Spin-lattice relaxation time Localized Spins EQUILIBRIUM PHYSICS Benchmark against experiment. 5/24/2017 A. Ali Yanik, Purdue University 5 A Unified Quantum Transport Model 5/24/2017 A. Ali Yanik, Purdue University 6 Unified Approach to Nanoscale Devices MOSFET Nanotubes (IBM, Kosawatta et al) (Damle et al) GateGate Source (Salahuddin et al) U HQuantum L Nuclear Spin Polarization R Quantum Device Device Drain Drain Source Scatterer Scattering RTD (Klimeck et al) MTJ (Yanik et al) Molecule (Gosh et al) 5/24/2017 Spin Torque (Prabhakar et al) A. Ali Yanik, Purdue University 7 Magnetic Tunnel Junctions Availability of Experimental Data Technological Importance 5/24/2017 A. Ali Yanik, Purdue University 8 Coherent Regime 5/24/2017 A. Ali Yanik, Purdue University 9 Junction Magnetoresistance Parallel Parallel ContactsContacts Antiparallel Contacts Anti-parallel Contacts F Δ E Tunneling Oxide Hard Layer Hard Layer EF minority c Δ majority c Δ E minority c E minority c E majority c EF Δ majority c RF RAF GF GAF I 0 I RAF GF I 0 Δ Barrier JMR U barr EF Soft Layer Tunneling Oxide Exchange shifted two current Hard Layer model EF T.M.E MaffitE et al IBM J. Res. & Dev. E50, 25 (2006) majority c F Soft Layer Tunneling Oxide EF E Soft Layer & Hard Layer F (fixed) F Soft Layer de minority c Anti-parallel Contacts F F EF Potential Barrier + Magnetic Contacts E minority c E cmajority JMR E F E minority c E majority c R RF RAF GF GAF E R RAF GAF F Δ Δ E cminority E cmajority GF GAF I 0 I R RF R AF R RAF GF I 0 Ecminority EF Ecminority majority c E Ecmajority Stearns M. B., J. Magn. Magn. Mater. 5, 167 (1977) 5/24/2017 A. Ali Yanik, Purdue University 10 Junction Magnetoresistance Parallel Parallel ContactsContacts Antiparallel Contacts Anti-parallel Contacts F F de EF Δ E minority c E F Soft Layer F Soft Layer Tunneling Oxide Tunneling Oxide Hard Layer Hard Layer EF majority c Soft Layer & Hard Layer F (fixed) Δ Δ E minority c EF E minority c E majority c Δ majority c RF RAF GF GAF I 0 I RAF GF I 0 Soft Layer Tunneling Oxide Exchange shifted two current Hard Layer model EF Δ T.M.E MaffitE et al IBM J. Res. & Dev. E50, 25 (2006) majority c Anti-parallel Contacts F EF minority c Potential Barrier + Magnetic Contacts E minority c E cmajority JMR E F E minority c E majority c R RF RAF GF GAF E R RAF GAF F Δ Δ E cminority E Practical Interest majority c R RF RAF GF GAF I 0 I R RAF GF I 0 Formula: JMR Spin polarization is conserved Slonczewski’s Rectangular potential barrier & exchange shifted parabolic bands. PFM Qualitatively correct and widely used by experimentalists kF kF 2 kF kF kF kF 2 kF kF 2m U 2 barr EF PRB 39, 6995 (1989) FailsJ.C. forSlonczewski Thin Tunneling Barriers!!! 5/24/2017 A. Ali Yanik, Purdue University 11 Coherent Regime (NEGF) JMR for Different Incoming Energies JMR Ez I F Ez I AF Ez I F Ez Weighting Factor Ez I F Ez I E F z Ez ω(Ez) shifts towards higher energies with increasing barrier thicknesses Ecmajority Ecminority EF EF=2.2eV, ∆=1.45eV and Vbias=1meV after Stearns et al. 5/24/2017 A. Ali Yanik, Purdue University 12 Coherent Regime (NEGF) EF=2.2eV, ∆=1.45eV and Vbias=1meV after Stearns et al. JMR for Different Incoming Energies JMR Ez I F Ez I AF Ez I F Ez Weighting Factor Ez I F Ez I E F z Ez ω(Ez) shifts towards higher energies with increasing barrier thicknesses Experimentally Measured JMR JMR Ez JMR ( Ez )dEz ω(Ez) shifts towards higher energies with increasing barrier thicknesses 5/24/2017 A. Ali Yanik, Purdue University 13 Incoherent Regime Impurity Concentration Barrier Thickness Barrier Height 5/24/2017 A. Ali Yanik, Purdue University 14 MTJs with Magnetic Impurity Layers R. Jansen & J. S. Moodera, J. Appl. Phys. 83, 6682 (1998) Soft Layer Hard Layer F Tunneling Oxide Tunneling Oxide F Impurity Layer Barrier U barr EF Ecminority EF Ecminority majority c E Ecmajority Impurity Layer 5/24/2017 A. Ali Yanik, Purdue University 15 MTJs with Magnetic Impurity Layers JMR(Ez) ratios reduces at all energies Elastic spin scattering doesn’t effect normalized ω(Ez) Decreasing JMRs with increasing impurity concentrations Normalized JMR ratios are barrier thickness independent 5/24/2017 A. Ali Yanik, Purdue University 16 MTJs with Magnetic Impurity Layers A universal trend independent from the barrier heights 5/24/2017 Minimal Fitting Parameters A. Ali Yanik, Purdue University 17 Pd & Ni Impurity Layers <J2>2D exchange coupling used as a fitting parameter Minimal temperature dependence Close <J2>2D coupling constants estimated for Pd and Ni impurities +1 spin state is believed to be the dominant state. 5/24/2017 A. Ali Yanik, Purdue University 18 High-Spin/Low-Spin Phase Transition J exchange coupling used as a fitting parameter Large temperature dependence Thermally driven low-spin/highspin phase transitions S. W. Biernacki et al, PRB. 72, 024406 (2005). Crystal Field Theory -The Pairing energy (P) Coulombic repulsion Exchange Energy -The eg - t2g Splitting d4-d7 systems: t2g set → low spin state eg set → high spin case. 5/24/2017 A. Ali Yanik, Purdue University 19 Details of the Theory 5/24/2017 A. Ali Yanik, Purdue University 20 Exchange Interaction Spin Scattering Gate H U L ΣL Quantum Device ΣR ΣS Source Drain Magnetic Impurity Magnon Scattering Aranov-Bir-Pikus (Electron-Hole) Nuclei (Hyperfine Interaction) Spin Array Hamiltonian: R H H ch H L, R H I H ch † n, p c Gn ,p mass r , r '; E description d r , r '; E k kDck ; r , r '; Effective H L, R Modeled through contact self energy in ,out S , i j k k , l i j k l k l L, R Analogous to the Rate at which electrons/holes S Modeled using self consistent Born approximation Electron/Hole Density H are I scattered in/out of a state 5/24/2017 A. Ali Yanik, Purdue University 21 Spin Scattering Self Energy Interaction Hamiltonian: H int r R J r - R j S j j Spin Array Spin Exchange Interaction * D n , ' H int r , t H int r ', t ' Channel Preserves Angular Momentum 1 1 1 H int r , t J r R aS t a † S t a †a S z t 2 2 2 a† 0 0 5/24/2017 Electron Operators Jordan-Wigner 1 1 x a † a 2 2 y 1 1 a† a 2i 2i z a†a 1 2 A. Ali Yanik, Purdue University Impurity Operators 0 eiq t S t d 0 0 0 S t d iqt e Sz d d 0 0 1 2 22 Inelastic Spin Flip Scattering Fu 0 Dn, p r , r '; D n, p r , r '; D n, p r , r '; sf nsf k , l q q I Spin Flip Scattering i , j q Non-Spin Flip Scattering 5/24/2017 0 Fu ,d q Fd ,u q 0 0 0 0 0 k , l Dn,p r , r '; r r ' J 2 N I q nsf 0 Fd i , j D n,p r , r '; r r ' J 2 N sf Impurity Density Matrix A. Ali Yanik, Purdue University 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 23 Elastic Spin Flip Scattering a r r ' J 2 N I q q a 1 2 J a 2D nI 2-D Translational Symmetry Elastic Spin Flip Scattering k l i j D n,p 0 sf J2 2D nI a 5/24/2017 A. Ali Yanik, Purdue University 0 F d,u 0 0 F u, d 0 0 0 0 0 0 0 0 0 0 0 24 Unpolarized Spin Ensemble Gate L ΣL H U Quantum Device ΣR ΣS Source R Drain Magnetic Impurity Layer Spin Array 0.5 0 0 0.5 5/24/2017 A. Ali Yanik, Purdue University 25 Direct Sol Self-consitent Sol. Fixed at the Outset Self-consistent Solution Channel: Hamiltonian Hz Regular Contacts: inL, R Ez f 2 D Ez L , R L , R Ez N ln 1 exp E out L , R Ez 1 f 2 D E z L , R L , R E z f 2 D Ez L, R s z L, R kBT Incoherent Scattering: S ; i j D i k ; k l G k l E i j Green’s Function G E EI H U L R S 2D G n Ez I P Ez 5/24/2017 1 2D S n Ez Transport Equations: q I L tr 2 D inL Ez A Ez tr L Ez 2 DG n Ez dEz h Ez A. Ali Yanik, Purdue University 26 Summary Electron-phonon relaxation time Challenges: Contacts Physics Based Unified Treatment Conservation Laws (angular momentum, total energy, particles) Numerically Treatable el Channel Electrons sl es NON-EQUILIBRIUM TRANSPORT Phonons Localized Spins Benchmarking against experiment Spin-lattice relaxation time Magnetic Impurity Layer 0.5 0 0 0.5 Contributions: A Non-Equilibrium Quantum Transport model with Spin Decoherence is developed. A Self Energy Calculation scheme is derived for Exchange Interaction Scattering. A numerical implementation is shown in MTJ devices. 5/24/2017 A. Ali Yanik, Purdue University 27 Acknowledgement Professors Supriyo Datta and Gerhard Klimeck Dr. Dmitri Nikonov – Intel corporation Sayeef Salahuddin, Prabhakar Srivastava NSF funded Network for Computational Nanotechnology (NCN) and MARCO 5/24/2017 A. Ali Yanik, Purdue University 28