Download defense - Purdue University

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Spin Dependent Electron Transport
in Nanostructures
A. Ali Yanik†
Dissertation
†Department
of Physics
&
Network for Computational Nanotechnology
Purdue University, West Lafayette, IN 47907
April 2007
5/24/2017
A. Ali Yanik, Purdue University
1
Spin + Electronics = Spintronics
5/24/2017
A. Ali Yanik, Purdue University
2
Spintronic Devices
Field Controlled Spintronics
Devices: Spin-FET (Datta), etc..
Magnetoelectronics
Devices: GMR (read heads),
TMR (MRAM), BMR Devices, etc..
Contact Injection/Detection
Gate Contact
External B Field
Spin Dephasing
Gate Voltage Control / Rashba Effect
FM
Gate
FM
2DEG
S. Datta & B. Das, APL. 56, 665 (1990)
5/24/2017
Non volatile RAM, Freescale,2006
A. Ali Yanik, Purdue University
3
Motivation-I
Concepts
Devices
Physics Community
Engineering Community
Spin Decoherence + QM
Transport + QM
Equilibrium
Non-Equilibrium
Decoherence Physics
Quantum Transport
NEGF Formalism
Ph.D. Thesis: First formalized treatment of Quantum-Transport with
Spin-Decoherence in NEGF
5/24/2017
A. Ali Yanik, Purdue University
4
Motivation-II
NEGF FORMALISM (Inelastic Transport)
Ballistic Transport / NEGF FORMALISM
Electron-phonon
relaxation time
Contacts

 el
Channel
Electrons
 sl
 es
Challenges:
State
of Art Modelling
NON-EQUILIBRIUM
TRANSPORT
 Physics Based Unified Treatment (not
specialized
device,
geometry, etc)
 Averagingfor
ofeach
Coherent
Processes
EQUILIBRIUM
PHYSICS
Conservation
Laws
(angular
Doesn’t Capture
the
Physicsmomentum,
total energy, particles)
 Not straightforward to include dissipative
interactions
Numerically Treatable
Phonons
Spin-lattice
relaxation time
Localized
Spins
EQUILIBRIUM PHYSICS
 Benchmark against experiment.
5/24/2017
A. Ali Yanik, Purdue University
5
A Unified Quantum
Transport Model
5/24/2017
A. Ali Yanik, Purdue University
6
Unified Approach to Nanoscale Devices
MOSFET
Nanotubes (IBM, Kosawatta et al)
(Damle et al)
GateGate
Source
(Salahuddin et al)
U 
 HQuantum
L
Nuclear Spin Polarization
R
Quantum
Device
Device
Drain
Drain
Source
Scatterer
Scattering
RTD (Klimeck et al)
MTJ
(Yanik et al)
Molecule (Gosh et al)
5/24/2017
Spin Torque (Prabhakar et al)
A. Ali Yanik, Purdue University
7
Magnetic Tunnel Junctions
Availability of Experimental Data
Technological Importance
5/24/2017
A. Ali Yanik, Purdue University
8
Coherent Regime
5/24/2017
A. Ali Yanik, Purdue University
9
Junction Magnetoresistance
Parallel
Parallel
ContactsContacts
Antiparallel
Contacts
Anti-parallel
Contacts
F
Δ
E
Tunneling Oxide
Hard Layer
Hard Layer
EF
minority
c
Δ
majority
c
Δ
E
minority
c
E
minority
c
E
majority
c
EF
Δ
majority
c
RF  RAF GF  GAF I   0   I    


RAF
GF
I   0 
Δ
Barrier
JMR 
U barr
EF
Soft Layer
Tunneling Oxide
 Exchange
shifted two current
Hard Layer
model
EF
T.M.E MaffitE et al IBM J. Res. & Dev. E50, 25 (2006)
majority
c
F
Soft Layer
Tunneling Oxide
EF
E
 Soft
Layer & Hard Layer
F
(fixed)
F
Soft Layer
de
minority
c
Anti-parallel Contacts
F
F
EF
 Potential Barrier + Magnetic
Contacts
E
minority
c
E cmajority
JMR

E
F
E
minority
c
E
majority
c
R RF  RAF GF  GAF

E
R
RAF
GAF
F
Δ
Δ
E cminority
E cmajority
 GF  GAF I   0   I    
R RF  R
AF



R
RAF
GF
I   0 

Ecminority
EF
Ecminority


majority
c
E
Ecmajority
Stearns M. B., J. Magn. Magn. Mater. 5, 167 (1977)
5/24/2017
A. Ali Yanik, Purdue University
10
Junction Magnetoresistance
Parallel
Parallel
ContactsContacts
Antiparallel
Contacts
Anti-parallel
Contacts
F
F
de
EF
Δ
E
minority
c
E
F
Soft Layer
F
Soft Layer
Tunneling Oxide
Tunneling Oxide
Hard Layer
Hard Layer
EF
majority
c
 Soft
Layer & Hard Layer
F
(fixed)
Δ
Δ
E
minority
c
EF
E
minority
c
E
majority
c
Δ
majority
c
RF  RAF GF  GAF I   0   I    


RAF
GF
I   0 
Soft Layer
Tunneling Oxide
 Exchange
shifted two current
Hard Layer
model
EF
Δ
T.M.E MaffitE et al IBM J. Res. & Dev. E50, 25 (2006)
majority
c
Anti-parallel Contacts
F
EF
minority
c
 Potential Barrier + Magnetic
Contacts
E
minority
c
E cmajority
JMR

E
F
E
minority
c
E
majority
c
R RF  RAF GF  GAF

E
R
RAF
GAF
F
Δ
Δ
E cminority
E
Practical Interest
majority
c
R RF  RAF GF  GAF I   0   I    



R
RAF
GF
I   0 
Formula:
JMR 
 Spin polarization is conserved Slonczewski’s
 Rectangular potential barrier &
exchange shifted parabolic bands.
PFM
 Qualitatively correct and widely
used by experimentalists

kF  kF  2  kF kF
 

kF  kF  2  kF kF
 2m  U
2
barr
 EF 
PRB 39,
6995 (1989)
FailsJ.C.
forSlonczewski
Thin Tunneling
Barriers!!!
5/24/2017
A. Ali Yanik, Purdue University
11
Coherent Regime (NEGF)
JMR for Different Incoming Energies
JMR  Ez  
I F  Ez   I AF  Ez 
I F  Ez 
Weighting Factor
  Ez   I F  Ez 
I E 
F
z
Ez
ω(Ez) shifts towards higher energies with
increasing barrier thicknesses

Ecmajority
Ecminority
EF
EF=2.2eV, ∆=1.45eV and Vbias=1meV after Stearns et al.
5/24/2017
A. Ali Yanik, Purdue University
12
Coherent Regime (NEGF)
EF=2.2eV, ∆=1.45eV and Vbias=1meV after Stearns et al.
JMR for Different Incoming Energies
JMR  Ez  
I F  Ez   I AF  Ez 
I F  Ez 
Weighting Factor
  Ez   I F  Ez 
I E 
F
z
Ez
ω(Ez) shifts towards higher energies with
increasing barrier thicknesses
Experimentally Measured JMR
JMR     Ez  JMR ( Ez )dEz
ω(Ez) shifts towards higher energies with
increasing barrier thicknesses
5/24/2017
A. Ali Yanik, Purdue University
13
Incoherent Regime
Impurity Concentration
Barrier Thickness
Barrier Height
5/24/2017
A. Ali Yanik, Purdue University
14
MTJs with Magnetic Impurity Layers
R. Jansen & J. S. Moodera, J. Appl. Phys. 83, 6682 (1998)
Soft Layer

Hard Layer
F
Tunneling Oxide
Tunneling Oxide
F
Impurity Layer
Barrier
U barr
EF


Ecminority
EF
Ecminority


majority
c
E
Ecmajority
Impurity Layer
5/24/2017
A. Ali Yanik, Purdue University
15
MTJs with Magnetic Impurity Layers
JMR(Ez) ratios reduces at all
energies
Elastic spin scattering doesn’t effect
normalized ω(Ez)
Decreasing JMRs with increasing
impurity concentrations
Normalized JMR ratios are barrier
thickness independent
5/24/2017
A. Ali Yanik, Purdue University
16
MTJs with Magnetic Impurity Layers
A universal trend
independent from
the barrier heights
5/24/2017
Minimal Fitting
Parameters
A. Ali Yanik, Purdue University
17
Pd & Ni Impurity Layers
<J2>2D exchange coupling used as
a fitting parameter
Minimal temperature dependence
Close <J2>2D coupling constants
estimated for Pd and Ni impurities
+1 spin state is believed to be the
dominant state.
5/24/2017
A. Ali Yanik, Purdue University
18
High-Spin/Low-Spin Phase Transition
J exchange coupling used as a
fitting parameter
Large temperature dependence
Thermally driven low-spin/highspin phase transitions
S. W. Biernacki et al, PRB. 72, 024406 (2005).
Crystal Field Theory
-The Pairing energy (P)
Coulombic repulsion
Exchange Energy
-The eg - t2g Splitting
d4-d7 systems:
t2g set → low spin state
eg set → high spin case.
5/24/2017
A. Ali Yanik, Purdue University
19
Details of the Theory
5/24/2017
A. Ali Yanik, Purdue University
20
Exchange Interaction Spin Scattering
Gate
H U 
 L  ΣL 
Quantum
Device
 ΣR 
 ΣS 
Source
Drain
Magnetic Impurity
Magnon Scattering
Aranov-Bir-Pikus (Electron-Hole)
Nuclei (Hyperfine Interaction)

Spin Array
Hamiltonian:
R
H  H ch  H L, R  H I
H ch
†
n, p

c

   Gn ,p mass
r , r '; E description
 d  
 r , r '; E  
 k  kDck ;   r , r '; Effective
H L, R
Modeled through contact self energy
in ,out
S , i j
k  k , l
i
j
k
l
k
l
 L, R
Analogous to the
Rate at which electrons/holes
S
Modeled using self consistent
Born approximation
Electron/Hole
Density
H
are
I scattered in/out of a state
5/24/2017
A. Ali Yanik, Purdue University
21
Spin Scattering Self Energy
Interaction Hamiltonian:



H int  r    R J r - R j   S j
j
Spin Array
Spin Exchange Interaction
*
D n  ,  '  H int  r , t  H int
 r ', t '
Channel
Preserves Angular
Momentum
1
1
1


H int  r , t   J  r  R  aS  t   a † S  t    a †a   S z  t  
2
2

2


  a† 0
  0
5/24/2017
Electron Operators
Jordan-Wigner
1
1
 x          a †  a 
2
2
y 
1 
1
       a†  a 

2i
2i
 z  a†a 
1
2
A. Ali Yanik, Purdue University
Impurity Operators

0 eiq t 
S t   d  

0
0




 0
S  t   d    iqt
e

Sz  d d 
0

0
1
2
22
Inelastic Spin Flip Scattering
 Fu
0
Dn, p  r , r ';     D n, p  r , r ';     D n, p  r , r ';  
sf
nsf

 k , l 
q
 q 
I




Spin Flip Scattering

 i , j 
q
Non-Spin Flip Scattering
5/24/2017



0
Fu ,d   q 

 Fd ,u   q 
0

0
0


0
0

 k , l 
 Dn,p  r , r ';       r  r '     J 2 N I q 
nsf
0
Fd 

 i , j 
 D n,p  r , r ';       r  r '   J 2 N
sf
Impurity Density
Matrix




A. Ali Yanik, Purdue University
1
0

0

0


0
1
0
0
0
0
1
0
0
0
0
0

0

0

0
0 

0
0 
0

 1
23
Elastic Spin Flip Scattering
a
  r  r '  J 2 N I q  
q
a
1 2
J
a
2D
nI
2-D Translational
Symmetry
Elastic Spin Flip Scattering
 k l 

 i j 

 D n,p    0  
sf
 J2
2D
nI a



5/24/2017
A. Ali Yanik, Purdue University
 0

F
 d,u
 0

 0


F
u, d
0
0
0
0
0
0
0

0

0

0

0
24
Unpolarized Spin Ensemble
Gate
 L  ΣL 
H U 
Quantum
Device
 ΣR 
 ΣS 
Source
R
Drain
Magnetic Impurity Layer

Spin Array
0.5 0 

 0 0.5

5/24/2017
A. Ali Yanik, Purdue University
25
Direct Sol
Self-consitent Sol.
Fixed at the Outset
Self-consistent Solution
Channel:
Hamiltonian
Hz 
Regular Contacts:
inL, R  Ez   f 2 D  Ez   L , R   L , R  Ez 


  N ln 1  exp    E
out
L , R  Ez   1  f 2 D  E z   L , R   L , R  E z 
f 2 D  Ez  L, R
s
z

 L, R  kBT 

Incoherent Scattering:
 S ; i j    D i k ; k l  G k l  E 
 i j
Green’s Function
G  E    EI  H  U  L  R  S 
2D

G n  Ez   I  P  Ez 
5/24/2017

1
2D
S n  Ez 
Transport Equations:
q
I L   tr  2 D inL  Ez  A  Ez   tr  L  Ez  2 DG n  Ez  dEz
h Ez

A. Ali Yanik, Purdue University

26
Summary
Electron-phonon
relaxation time
Challenges:
Contacts
 Physics Based Unified Treatment

 Conservation Laws (angular momentum,
total energy, particles)
 Numerically Treatable
 el
Channel
Electrons
 sl
 es
NON-EQUILIBRIUM TRANSPORT
Phonons
Localized
Spins
 Benchmarking against experiment
Spin-lattice
relaxation time
Magnetic Impurity Layer
0.5 0 


 0 0.5
Contributions:
 A Non-Equilibrium Quantum Transport model with Spin Decoherence
is developed.
 A Self Energy Calculation scheme is derived for Exchange Interaction
Scattering.
 A numerical implementation is shown in MTJ devices.
5/24/2017
A. Ali Yanik, Purdue University
27
Acknowledgement

Professors Supriyo Datta and Gerhard Klimeck

Dr. Dmitri Nikonov – Intel corporation

Sayeef Salahuddin, Prabhakar Srivastava

NSF funded Network for Computational Nanotechnology
(NCN) and MARCO
5/24/2017
A. Ali Yanik, Purdue University
28
Related documents