Download umd_colloquium - University of Maryland

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
QUARKS, GLUONS
AND
NUCLEAR FORCES
Paulo Bedaque
University of Maryland, College Park
strong nuclear force:
binds neutrons and protons
into nuclei
Quantum Chromodynamics
(QCD)
What do we know ?
1) NN phase shifts
1S
0
neutron-proton
What do we know ?
2) Several potentials that fit them
pion exchange
all kinds of things …
What do we know ?
3) These potentials explain a lot but not everything
• NNn, NNg, couplings
• NNN forces
• NY forces
• ...
few % on nd
~5% of nuclei binding
strangeness in neutron stars
Can we understand the nuclear forces (and
NNN, NNn, …) from first principles ?
LATTICE QCD
PATH INTEGRALS
iS1
e
Probability | eiS1  eiS1 
e
iS2
|2
Quantum mechanics reduced to quadratures
 x(t ) x(0)  
operators
iS [ x(t )] x(t ) x(0)
Dx
(
t
)
e

iS [ x(t )]
Dx
(
t
)
e

numbers
iS [ x ( t )]
Dx
(
t
)
e
is as well (or ill) defined as




dx ei x
Imaginary time (t
it): just like stat mech
probability
distribution
 x(t ) x(0)    Dx(t ) Z1 e S [ x (t )] x(t ) x(0)
1
N
N
 x (t ) x (0)
i 1
i
i
But I don’t live in imaginary time !
What can I do with imaginary time correlators ?
 0 | x(t ) x(0) | 0    0 | e Ht x(0)e Ht x(0) | 0 
   0 | x | n  e( E E )t  n | x | 0 
n
0
n
 e( E  E0 )t | 0 | x | 1 |2
t
1
lowest energy state w/
some overlap
Typical paths
xi (t ) xi (0)
N
1 x (t ) x (0)

i
N i 1 i
PATH INTEGRALS FOR FIELDS
iS1
e
iS1
e
Quantum Chromodynamics
Q = spinor, 3 colors,
6 flavors
= quarks
U = SU(3) matrix
= gluons
QCD reduced to quadratures
 qg 5q( x ) qg 5q(0)   1
Z
 1
Z

 SG [U ]q ( DU m ) q
DUDqDq
e
qg 5q( x ) qg 5q(0)

 SG [U ]
DU
e
det( DU  m) tr[


1 g
1 g ]
5
DU  m DU  m 5
probability distribution for Ui
 qg 5q( x ) qg 5q(0)   1
Z
 1
N
 SG [U ]
DU
e
det( DU  m) tr[

N
 tr[
i 1
1
1
g5
g 5]
DU  m DU  m
i
i
algorithm
1. find {Ui}
2. compute 1/(DUi+m)
3. compute observable
1 g
1 g ]
5
DU  m DU  m 5
Scattering through finite volumes:
the Luscher method
(Marinari, Hamber, Parisi, Rebbi)
one particle
Periodic boundary
conditions: box is a torus
Energy levels at En   2 n   m 2
 L 
2
Scattering through finite volumes:
the Luscher method
(Marinari, Hamber, Parisi, Rebbi)
two particles
1  M EL2 
M E cot  (E ) 
S

 L  4 2 
known function
Learn about the deuteron in boxes smaller
than the deuteron
 0 | N (t , k ) N (t , k ) N † (0, k ) N † (0, k ) | 0     0 | N (0, k ) N (0, k )e
 Ht
| n  n | N † (0, k ) N † (0, k ) | 0 
n
 e
t 
 E2 N t
| NN at rest | N † (0, k ) N † (0, k ) | 0 |2
The difference between E2N and EN is our
signal
phase shift
The time to try it is now
• Pion masses small enough for chiral extrapolation
• No quenching
• Volumes ~ (3 fm)3
• Improved actions
• Good chiral symmetry
• Software resources
S. Beane, T. Luu, K. Orginos, E. Pallante, A. Parreno,
M. Savage, A. Walker-Loud, …
Gold platted scattering observable: I=2 pp
K(e4)
CP-PACS
m2
m a2  
8 f2


3m2 
m2
1

log

l
(

)



2 2 
2


 16 f 



Improved statistics
K(e4)
CP-PACS
m2
m a2  
8 f2


3m2 
m2
1

log

l
(

)



2 2 
2


 16 f 



Nucleon-nucleon
Nucleon-nucleon
“natural” |a| < 1 fm for
350 < m < 600 MeV
a=5.4 fm or 20 fm for m=138 MeV
is indeed fine tuned
Chiral “extrapolation”
• no anchor at mp= 0
• wild behavior of the scattering length with mq
The crucial problem is the large statistical errors
signal:
C (t )   q6 (t ) q 6 (0)  e 2 Mt
2 baryons
error:
 2 (t )   q6 (t )q 6 (t ) q6 (0)q 6 (0)  e 6 m t
6 pions
signal
noise
1 (2 M N 3m )t
e
N
signal
noise
1 (2 M N 3m )t
e
N
If the minimum pion energy was larger
m, the signal would be better
(-z) = -(z) ?
Parity orbifold (P.B. +Walker-Loud)
parity reversed
 ( z)    ( z)
minimum pion energy is
E 
L

2
 m2
Parity orbifold: pinhole
these points are
related by parity
 ( x,  y,  z)    ( x, y, z)
minimum pion energy is

E  3 
L
2
 m2
?
Summary
• Lattice QCD calculation of hadron
interactions are doable
• Meson-meson scattering can be computed
with few % precision
• There is a serious noise problem in baryonbaryon channels, new ideas are needed
• New ideas exist ! We’ll find out how they
work really soon
weighted fit: lpp = 3.3(6)(3)
different weigths
mp a2 = -0.0426 (6)(3)(18)
lpp
1-loop – 2-loop
w/o counterterm
K(e4): mp a2 = -0.0454(31)(10)(8)
theoretical
cPT predicts discretization errors (a2) ~ 1% (D. O’Connel,
A. Walker-Loud, R. V. Water, J. Chen)
Finite volume (e-mpL) ~ 1% (P.B. & I. Sato)
Extracting physics from euclidean space : energies are "easy"
 0 |  (t , k  0)  † (0, k  0) | 0    e Ht  0 |  (0, 0)| n  n |  † (0, 0) | 0 
n
 e
t 
some operator with quantum
numbers of the pion, made of
quarks and gluons, for instance:
q (0,  p)g 5 a q(0, p)
m t
 0 |  (0, 0)|    |  † (0, 0) | 0 
lowest energy state with the
quantum numbers of the pion
Solution 2: Aharonov-Bohm effect
add a background magnetic
potential coupled to baryon
number with zero curl
q ( L)  q (0)
A

3L

L
zˆ
q( L)  ei / 3q(0)
A0
zˆ
N ( L)  N (0)
A
or
or
N ( L)  ei N (0)
A0
no coupling to local operators !
Related documents