Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 6. Time-Dependent Schrodinger Equation 6.1 Introduction Energy can be imparted or taken from a quantum system only if the system can jump from one energy Em to another energy En. A change from one orbit to another can occur if an external time-dependent force Fext acts on the quantum system. We can associate this force with a new potential energy : Fext (r, t ) Vext (r, t ) , and the system’s total Hamiltonian can be given by 2 (6.1.1) H H a Vext (r, t ) V (r ) Vext (r, t ) 2m The Schrodinger equation becomes 2 V (r ) Vext (r, t ) (r, t ) i t 2m Nonlinear Optics Lab. (6.1.2) Hanyang Univ. 6.2 Time-Dependent Solutions Time-independent Schrodinger equation ; H a n En n * n : Complete & Orthonormal => Any function can be expressed by the n ' s Following Dirac, the exact time-dependent wave function can be expressed by a sum of n ' s ; ( r , t ) an n ( r ) (6.2.1) n (6.1.2) => an [ H a Vext ] n (r) i n n an [ En Vext ] n (r) i n n an n (r ) t (6.2.2) an n (r ) t (6.2.3) Nonlinear Optics Lab. Hanyang Univ. m (r ) & , m | n all space * 3 ( r ) ( r ) d m n r mn all space ia m Em am an *m (r )Vext n (r )d 3 r n iam Em am Vmn (t )an : time-dependent Schrodinger equation n * 3 where, Vmn (t ) m (r )Vext (r, t ) n (r ) d r (6.2.7) <Meaning of am : probability amplitude> (r , t )(r , t )d r 1 * 3 * 3 a a m m n n d r m n Probability that the quantum system is in its m-th orbit. am* an m | n am* an mn | am |2 1 m n m n m Nonlinear Optics Lab. Hanyang Univ. 6.3 Two-State Quantum Systems and Sinusoidal External Forces Time-dependent potential for the interaction between an EM field and an electron ; Vext (r, R, t ) er E(R, t ) : dipole approximation For a monochromatic wave, 1 ˆ E(R , t ) E 0 cos( k R t ) ˆE 0 ei ( kR t ) c.c. 2 1 Put, R 0 ˆE 0 e i t ) c.c. (6.3.1) 2 For a two-state system, (r, t ) a1 (t )1 (r) a2 (t )2 (r) (6.2.8) ia1 (t ) E1a1 (t ) V11a1 (t ) V12a2 (t ) ia2 (t ) E2a2 (t ) V21a1 (t ) V22a2 (t ) 0 ia1 (t ) E1a1 (t ) V12a2 (t ) ia2 (t ) E2a2 (t ) V21a1 (t ) Nonlinear Optics Lab. Hanyang Univ. (6.3.4) Normalization condition ; | a1 (t ) |2 | a2 (t ) |2 1 (6.2.7), (6.3.1) => 1 V12 (t ) er12 (ˆ E 0 e it c.c.) 2 1 V21 (t ) er21 (ˆ E 0 e it c.c.) where, r12 1* (r ) r 2 (r )d 3r 2 Define, Set, E1 0 (6.3.4) => E2 E1 21 1 i t * i t i a ( t ) ( e e )a2 (t ) 1 12 21 E0 2 21 e(r21 ˆ) 1 i t * i t i a ( t ) a ( e e )a1 (t ) 2 21 2 21 12 E0 2 12 e(r12 ˆ) (6.3.11) : Rabi frequency (field-atom interaction energy in freq. unit) Nonlinear Optics Lab. Hanyang Univ. i) 0 : E 0 0 ( radiation field=0) a1 (t ) a1 (0) const. a2 (t ) a2 (0) exp[ i 21t ] ii) 21 ( nearly resonant radiation field) Neglected by rotating-wave approximation 1 2 i t * i c ( t ) ( e )c2 1 12 21 2 a1 (t ) c1 (t ) (6.3.11) => 1 i t * 2 i t a ( t ) c ( t ) e i c ( t ) ( ) c ( )c1 2 2 2 21 2 21 12e 2 1 * i c ( t ) 21c2 1 where, 21 : detuning 2 E0 1 1 ˆ ( e r ) ic2 (t ) ( 21 )c2 21c1 c2 c1 21 21 2 2 : Rabi frequency trial solution, Nonlinear Optics Lab. Hanyang Univ. Solution) initial condition ; c1 (0) 1, c2 (0) 0 t t it / 2 c ( t ) cos i sin e 1 2 2 t it / 2 c2 (t ) i sin e 2 where, ( 2 2 )1/ 2 : Generalized Rabi frequency Probability ; P1 (t ) | a1 (t ) |2 , P2 (t ) | a2 (t ) |2 2 2 1 1 P1 (t ) 1 cos t 2 2 2 1 P ( t ) [1 cos t ] 2 2 Nonlinear Optics Lab. Hanyang Univ. 6.4 Quantum Mechanics and the Lorentz Model - Lorentz (classical) model can’t give the oscillator stength, f - Why the classical model offers good explanation for a wide variety of phenomena ? Basic dynamic variable for an atomic electron : Displaceement, x in classical model, Corresponding quantum displacement : expectation value, r r * (r, t ) r (r, t ) d 3 r For the two-state atom, r (a1*1* a2* *2 ) r (a1 1 a2 2 ) d 3 r | a1 |2 r11 | a2 |2 r22 a1*a2 r12 a2*a1r12 where, rij *i ( r ) r j (r ) d 3 r Nonlinear Optics Lab. Hanyang Univ. Vii 0, rii 0 r r12a1*a2 r21a2*a1 r12a1*a2 c.c. For a case of linear polarization, ˆE 0 is real. d * (a1 a2 ) i ( E2 E1 )a1*a2 iV21 (| a1 |2 | a2 |2 ) dt 2 d 2 2 (a1*a2 ) i( E2 E1 ) 2 a1*a2 iV21 (| a1 |2 | a2 |2 ) dt d i [V21 (| a1 |2 | a2 |2 )] dt Since r12 is real, r r12 (a1*a2 a1a2* ) (6.3.4) d2 2e0 2 2 0 r r12 (r21 E)(| a1 |2 | a2 |2 ) dt E2 E1 where, 0 Nonlinear Optics Lab. Hanyang Univ. If we assume, | a2 |2 1 & | a1 |2 1 d2 2e0 2 0 2 r r12 (r21 E) dt Suppose the E-field points in the z-direction, E ẑE d2 2e0 2 2 0 r r12 z21 E) dt example) Let atomic state 1 and 2 be the 100 and 210 (1S and 2P) 1 (r) R1, 0 (r)Y00 ( , ) 2 (r) R2,1 (r)Y10 ( , ) z 21 *2 (r ) z 1 (r ) d 3r 2 0 0 0 r 3 R2*,1 (r ) R1,0 (r ) dr r21 ẑ 21 * Y 1 ,0 ( , ) sin cos Y0,0 ( , ) dd Nonlinear Optics Lab. Hanyang Univ. Homework : Appendix 5.A ! Table 6.1, 6.2, 2 3 / 2 r r / 2 a0 3 r / a0 e r21 (2a0 ) (2a0 ) re dr 1.29a0 2a0 3 0 2 : Bohr radius where, a0 40 0 . 53 A me2 2 1 3 1 2 ẑ 21 d cos sin d 4 4 0 0 3 3 / 2 z 21 r21zˆ21 0.745 a0 d2 2e0 2e0 2 2 0 r ẑ z12z 21E (z12 ) 2 ẑE dt d2 e 2 cf) x ẑE in classical model 0 dt 2 m Nonlinear Optics Lab. Hanyang Univ. Classic 2 e m Quantum mechanics 2e 2 0 2 z12 Oscillator Strength : 2 2 e e (3.7.5) f m m f 2m 0 2 z12 example) Hydrogen n=1 => n=2, , f 0.416 (Table 3.1) 1216 A 2 3 108 2 9.110 10 1216 10 f 0.417 34 1.054 10 31 Nonlinear Optics Lab. Hanyang Univ. 6.5 Density Matrix and (Collisional) Relaxation Two level system, time-dependent Schrodinger equation, (r, t ) a1 (t )1 (r) a2 (t )2 (r) a1 (t ) c1 (t ) i t a ( t ) c ( t ) e 2 2 (6.3.2) (6.3.12) 1 * i c ( t ) 21c2 1 2 (6.3.14) 1 ic2 (t ) c2 c1 2 * * Via (6.4.3), r r12a1*a2 c.c., the combination variable a1 a2 and a1a2 are more useful than either a1 or a2 alone. Nonlinear Optics Lab. Hanyang Univ. * Define, 12 c1c2 21 c2c1* 11 c1c1* | c1 |2 22 c2c2* | c2 |2 1 1 12 c1c2* c1c2* i ( *c2 )c2* c1 (ic2 i c1 )* 2 2 i12 i similarly, * 2 ( 22 11 ) 21 i 21 i ( 22 11 ) 2 i * 11, 22 : level' s occupation probabilit y 11 ( 12 * 21 ) 2 (population ) i * 12 , 21 : complex amplitude 22 ( 12 * 21 ) 2 of the electron' s displaceme nt, r Nonlinear Optics Lab. Hanyang Univ. The equations are not yet in their most useful form, since they do not reflect the existence of relaxation such as collision. <Relaxation Processes> elastic collision : oscillatio n phase change - collision inelastic collision : decay to other levels - spontaneou s emission : decay from 2 to 1 level 1) Elastic collision effect * 11, 22 const. only change the 12 , 21. * if the radiation field is steady. const. * Collision occurs at t 1 , and 21 (t ) |t t1 0 (6.3.14) => 21 (t ) ( 22 11 ) 2 (1 e i ( t t1 ) ) Nonlinear Optics Lab. Hanyang Univ. Average value 21 (t ) ( 22 11 ) 2 t dt e ( t t1 ) / 1 (1 e i ( t t1 ) ) ( 22 11 ) 2 1 i / This result can also be reached by a simple modification of the original equation of motion ; i 1 21 ( i) 21 i ( 22 11 ) 2 Similarly, 1 * 12 ( i) 12 i ( 22 11 ) 2 Nonlinear Optics Lab. Hanyang Univ. 2) Inelastic collision effect and Spontaneou s emission i) 11 , 22 ( 22 ) col 2 22 ( 22 )spon A 21 22 ( 11 ) col 1 22 2 2 A21 1 ( 11 )spon A 21 22 1 i 2 i 22 (2 A 21 ) 22 ( 12 * 21 ) 2 * (6.5.2) => 11 1 11 A 21 22 ( 12 21 ) Nonlinear Optics Lab. Hanyang Univ. ii) 12 , 21 By definition (6.5.1) [ 12 c1c2* , 21 c2 c1* ], each effect on 11 and 22 contribute s to 12 or 21 evenly. average of the two effects (6.5.2) => 12 ( i) 12 i 21 ( i) 21 i where, * 2 2 ( 22 11 ) ( 22 11 ) 1 1 (1 2 A 21 ) : total relaxation rate 2 Nonlinear Optics Lab. Hanyang Univ. <Special case> 1 2 0, 0 i * A ( 21 ) 21 22 12 11 2 i 22 A 21 22 ( 12 * 21 ) 2 11 22 0 11 22 1 No dynamic information ! * ( 22 11 ) 12 12 i 2 21 21 i ( 22 11 ) , 1 1 A 21 2 2 So, we can pay attention solely to the differences, 22 11, 12 21 v i( 21 12 ) w 22 11 Nonlinear Optics Lab. Hanyang Univ. - Assume that is real, (& 1 2 0, 0) i ( 21 12 ) i 21 i ( 22 11 ) 12 i ( 22 11 ) 2 2 v w w 22 11 A21 22 i i ( 12 21 ) A21 22 ( 12 21 ) 2 2 A21( 22 1 11) v A21(1 w) v (Chapter 8 : Bloch equation) The notation used for 's 11 21 12 22 : density matrix Nonlinear Optics Lab. Hanyang Univ. Nonlinear Optics Lab. Hanyang Univ.