Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Bernoulli Distribution
๐(1) = ๐(๐ = 1) = ๐
๐(0) = ๐(๐ = 0) = 1 โ ๐
๐(๐ฅ|๐) = ๐ ๐ฅ (1 โ ๐)1โ๐ฅ
Multinomial Distriubtion
๐(1) = ๐(๐ = 1) = ๐1
๐(๐) = ๐(๐ = ๐) = ๐๐
๐
โ ๐๐ = 1
๐=1
Maximum Likelihood
Assume data is independent, identically distributed
๐
๐(๐ฅ1 , ๐ฅ2 , โฆ , ๐ฅ๐ |๐) = โ ๐(๐ฅ๐ |๐)
๐=1
Find ๐ that maximizes the joint probability
If given a function, the minima / maxima will occur when the derivative is at zero. It is necessary to take
the second derivative to ensure that you have found a maxima (should be negative)
Contiguous Probability Distributions
Probability Density Function
๐
๐(๐ < ๐ฅ < ๐) = โซ ๐(๐ฅ)๐๐ฅ
๐คโ๐๐๐ ๐(๐ฅ)๐๐ ๐ ๐๐๐๐ ๐๐ก๐ฆ ๐๐ข๐๐๐ก๐๐๐
๐
โ
โซ ๐(๐ฅ)๐๐ฅ = 1
โโ
โ
๐ธ(๐ฅ) = โซ ๐ฅ๐(๐ฅ)๐๐ฅ
โโ
Sum Rule:
๐(๐ฅ) =
โ
โซโโ ๐(๐ฅ, ๐ฆ)๐๐ฅ
Uniform Distribution
1
๐๐๐๐(๐, ๐) = {๐ โ ๐ ๐ โค ๐ฅ โค ๐
0 ๐๐กโ๐๐๐ค๐๐ ๐
Things are only possible between a and b
โ
๐
๐ธ(๐ฅ) โ โซ ๐ฅ๐(๐ฅ)๐๐ฅ = โซ ๐ฅ
โโ
๐
๐
1
1
1 ๐ฅ2
๐๐ฅ =
โซ ๐ฅ๐๐ฅ =
๐โ๐
๐โ๐ ๐
๐โ๐ 2
Gaussian Distribution
๐(๐ฅ|๐, ๐ 2 ) =
1
โ2๐๐ 2
โ exp (โ
โ
โ2๐๐ 2 = โซ exp (โ
โโ
1
(๐ฅ โ ๐)2 )
2๐ 2
1
(๐ฅ โ ๐)2 ) ๐๐ฅ
2๐ 2
Maximum Likelihood in a Gaussian Distribution
๐ฅ1 , ๐ฅ2 , โฆ , ๐ฅ๐ : IID Samples
๐
๐(๐ฅ1 , ๐ฅ2 , โฆ , ๐ฅ๐ |๐, ๐
2)
= โ ๐(๐ฅ๐ |๐, ๐ 2 )
๐=1
๐
= โ
๐=1
๐
1
exp (โ 2 (๐ฅ๐ โ ๐)2 )
2
.5
(2๐๐ )
2๐
๐
๐
1
=
exp (โ 2 โ
2
.5
(2๐๐ )
2๐
(๐ฅ๐ โ ๐)2 )
๐=1
Take Log
๐
๐
๐
1
โ ln(2๐) โ ln(๐ 2 ) = 2 โ(๐ฅ๐ โ ๐)2
2
2
2๐
๐=1
Take derivative with ๐
๐
1
โ(๐ฅ๐ โ ๐) = 0
๐2
๐=1
๐
๐๐๐
1
= โ ๐ฅ๐
๐
๐=1
For ๐ 2
(๐ ๐๐๐๐๐ ๐๐๐๐)
๐
|
๐
๐
2
๐๐๐ฟ
1
= โ(๐ฅ๐ โ ๐๐๐ฟ )2
๐
(๐ ๐๐๐๐๐ ๐ฃ๐๐๐๐๐๐๐)
๐=1
Multivariate Gaussian Distribution
More than one random variable
Represent the set of random variables in a vector
Now let ๐ฅโ be a vector.
๐ข
โโ = ๐ฃ๐๐๐ก๐๐ ๐๐ ๐๐๐๐๐กโ ๐
๐(๐ฅโ|๐ข
โโ, โ) =
1
๐
1
(2๐) 2 |โ|2
โ1
1
exp(โ (๐ฅ โ ๐)๐ โ โ (๐ฅ โ ๐)
2
Suppose โ = ๐ 2 , ๐ผ
2
โ = (๐
0
0)
๐2
If the covariance is, zero, then ๐ฅ1 , ๐ฅ2 are independent variables
Properties
1. Suppose ๐ฅโ is a multivariate Gaussian
๐ฅโ~๐(๐ข
โโ, โ)
(๐๐ ๐(๐ฅโ|๐ข
โโ, โ) )
Partition ๐ฅโ:
๐ฅโ
๐ฅโ = ( a )
๐ฅโb
๐โ๐๐ก ๐๐ ๐(๐ฅโ๐ |๐ฅ
โโโโโ)?
Multivariate Gaussian.
๐
2. Sum Rule
๐(๐ฅโ๐ ) = โซ ๐(๐ฅโ)๐๐ฅโ๐
Also a multivariate Gaussian
3. Bayes Rule for Gaussians
๐(๐ฅ|๐ฆ) =
๐(๐ฆ|๐ฅ)๐(๐ฅ)
๐(๐ฆ)
If ๐(๐ฆ|๐ฅ) and ๐(๐ฅ) are Gaussian, then ๐(๐ฆ) and ๐(๐ฅ|๐ฆ) are Gaussian