Download docx

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Bernoulli Distribution
๐‘“(1) = ๐‘(๐‘‹ = 1) = ๐œƒ
๐‘“(0) = ๐‘(๐‘‹ = 0) = 1 โˆ’ ๐œƒ
๐‘(๐‘ฅ|๐œƒ) = ๐œƒ ๐‘ฅ (1 โˆ’ ๐œƒ)1โˆ’๐‘ฅ
Multinomial Distriubtion
๐‘“(1) = ๐‘(๐‘‹ = 1) = ๐œƒ1
๐‘“(๐‘˜) = ๐‘(๐‘‹ = ๐‘˜) = ๐œƒ๐‘˜
๐‘˜
โˆ‘ ๐œƒ๐‘ = 1
๐‘=1
Maximum Likelihood
Assume data is independent, identically distributed
๐‘›
๐‘(๐‘ฅ1 , ๐‘ฅ2 , โ€ฆ , ๐‘ฅ๐‘› |๐œƒ) = โˆ ๐‘(๐‘ฅ๐‘– |๐œƒ)
๐‘–=1
Find ๐œƒ that maximizes the joint probability
If given a function, the minima / maxima will occur when the derivative is at zero. It is necessary to take
the second derivative to ensure that you have found a maxima (should be negative)
Contiguous Probability Distributions
Probability Density Function
๐‘
๐‘ƒ(๐‘Ž < ๐‘ฅ < ๐‘) = โˆซ ๐‘(๐‘ฅ)๐‘‘๐‘ฅ
๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘(๐‘ฅ)๐‘–๐‘  ๐‘Ž ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›
๐‘Ž
โˆž
โˆซ ๐‘(๐‘ฅ)๐‘‘๐‘ฅ = 1
โˆ’โˆž
โˆž
๐ธ(๐‘ฅ) = โˆซ ๐‘ฅ๐‘(๐‘ฅ)๐‘‘๐‘ฅ
โˆ’โˆž
Sum Rule:
๐‘(๐‘ฅ) =
โˆž
โˆซโˆ’โˆž ๐‘(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฅ
Uniform Distribution
1
๐‘ˆ๐‘›๐‘–๐‘“(๐‘Ž, ๐‘) = {๐‘ โˆ’ ๐‘Ž ๐‘Ž โ‰ค ๐‘ฅ โ‰ค ๐‘
0 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
Things are only possible between a and b
โˆž
๐‘
๐ธ(๐‘ฅ) โˆ’ โˆซ ๐‘ฅ๐‘(๐‘ฅ)๐‘‘๐‘ฅ = โˆซ ๐‘ฅ
โˆ’โˆž
๐‘Ž
๐‘
1
1
1 ๐‘ฅ2
๐‘‘๐‘ฅ =
โˆซ ๐‘ฅ๐‘‘๐‘ฅ =
๐‘โˆ’๐‘Ž
๐‘โˆ’๐‘Ž ๐‘Ž
๐‘โˆ’๐‘Ž 2
Gaussian Distribution
๐‘(๐‘ฅ|๐œ‡, ๐œŽ 2 ) =
1
โˆš2๐œ‹๐œŽ 2
โˆ— exp (โˆ’
โˆž
โˆš2๐œ‹๐œŽ 2 = โˆซ exp (โˆ’
โˆ’โˆž
1
(๐‘ฅ โˆ’ ๐œ‡)2 )
2๐œŽ 2
1
(๐‘ฅ โˆ’ ๐œ‡)2 ) ๐‘‘๐‘ฅ
2๐œŽ 2
Maximum Likelihood in a Gaussian Distribution
๐‘ฅ1 , ๐‘ฅ2 , โ€ฆ , ๐‘ฅ๐‘› : IID Samples
๐‘›
๐‘(๐‘ฅ1 , ๐‘ฅ2 , โ€ฆ , ๐‘ฅ๐‘› |๐œ‡, ๐œŽ
2)
= โˆ ๐‘(๐‘ฅ๐‘– |๐œ‡, ๐œŽ 2 )
๐‘–=1
๐‘›
= โˆ
๐‘–=1
๐‘–
1
exp (โˆ’ 2 (๐‘ฅ๐‘– โˆ’ ๐œ‡)2 )
2
.5
(2๐œ‹๐œŽ )
2๐œŽ
๐‘›
๐‘–
1
=
exp (โˆ’ 2 โˆ‘
2
.5
(2๐œ‹๐œŽ )
2๐œŽ
(๐‘ฅ๐‘– โˆ’ ๐œ‡)2 )
๐‘–=1
Take Log
๐‘›
๐‘›
๐‘›
1
โˆ’ ln(2๐œ‹) โˆ’ ln(๐œŽ 2 ) = 2 โˆ‘(๐‘ฅ๐‘– โˆ’ ๐œ‡)2
2
2
2๐œŽ
๐‘–=1
Take derivative with ๐œ‡
๐‘›
1
โˆ‘(๐‘ฅ๐‘– โˆ’ ๐œ‡) = 0
๐œŽ2
๐‘–=1
๐‘›
๐œ‡๐‘š๐‘™
1
= โˆ‘ ๐‘ฅ๐‘–
๐‘›
๐‘–=1
For ๐œŽ 2
(๐‘ ๐‘Ž๐‘š๐‘๐‘™๐‘’ ๐‘š๐‘’๐‘Ž๐‘›)
๐‘
|
๐‘Ž
๐‘›
2
๐œŽ๐‘€๐ฟ
1
= โˆ‘(๐‘ฅ๐‘– โˆ’ ๐œ‡๐‘€๐ฟ )2
๐‘›
(๐‘ ๐‘Ž๐‘š๐‘๐‘™๐‘’ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘’๐‘›๐‘๐‘’)
๐‘–=1
Multivariate Gaussian Distribution
More than one random variable
Represent the set of random variables in a vector
Now let ๐‘ฅโƒ— be a vector.
๐‘ข
โƒ—โƒ— = ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘œ๐‘“ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘‘
๐‘(๐‘ฅโƒ—|๐‘ข
โƒ—โƒ—, โˆ‘) =
1
๐‘‘
1
(2๐œ‹) 2 |โˆ‘|2
โˆ’1
1
exp(โˆ’ (๐‘ฅ โˆ’ ๐œ‡)๐‘‡ โˆ‘ โˆ‘ (๐‘ฅ โˆ’ ๐œ‡)
2
Suppose โˆ‘ = ๐œŽ 2 , ๐ผ
2
โˆ‘ = (๐œŽ
0
0)
๐œŽ2
If the covariance is, zero, then ๐‘ฅ1 , ๐‘ฅ2 are independent variables
Properties
1. Suppose ๐‘ฅโƒ— is a multivariate Gaussian
๐‘ฅโƒ—~๐‘(๐‘ข
โƒ—โƒ—, โˆ‘)
(๐‘œ๐‘Ÿ ๐‘(๐‘ฅโƒ—|๐‘ข
โƒ—โƒ—, โˆ‘) )
Partition ๐‘ฅโƒ—:
๐‘ฅโƒ—
๐‘ฅโƒ— = ( a )
๐‘ฅโƒ—b
๐‘Šโ„Ž๐‘Ž๐‘ก ๐‘–๐‘  ๐‘(๐‘ฅโƒ—๐‘Ž |๐‘ฅ
โƒ—โƒ—โƒ—โƒ—โƒ—)?
Multivariate Gaussian.
๐‘
2. Sum Rule
๐‘(๐‘ฅโƒ—๐‘Ž ) = โˆซ ๐‘(๐‘ฅโƒ—)๐‘‘๐‘ฅโƒ—๐‘
Also a multivariate Gaussian
3. Bayes Rule for Gaussians
๐‘(๐‘ฅ|๐‘ฆ) =
๐‘(๐‘ฆ|๐‘ฅ)๐‘(๐‘ฅ)
๐‘(๐‘ฆ)
If ๐‘(๐‘ฆ|๐‘ฅ) and ๐‘(๐‘ฅ) are Gaussian, then ๐‘(๐‘ฆ) and ๐‘(๐‘ฅ|๐‘ฆ) are Gaussian
Related documents