Download Low Frequency Oscillator Block Requirements

Document related concepts
no text concepts found
Transcript
EE595 Capstone Design
Team 1
i1
EE595 Capstone Design
Team 1
• Kahnec De La Torre – Lead Report Manager
– BSEE – Programming and Wireless Networking
• Mike Haynes – Lead Manufacturing Manager
– BSEE – VHDL
• Bounnong Khamphoumy
– Lead Project Integrator
– BSEE – Electronics
• Jason Knedlhans – Lead System Designer
– BSEE – Audio
• Joseph Spitz – Lead Presentation Manager
– BSEE – Cacophonic Electronics
Selected Project
• A musical instrument
– New variation on synthesizer
– Mounted like a keyboard or upright like a cello
• Enables user to produce varied sounds
– Digital Effects including echo, auto-wah, and distortion
– Analog overdrive effects
• Continuously variable frequency selector
– Requires both hands to play
– Much like stringed conventional instruments
The i1
Top View
Volume
Continuous Frequency
Selector
DSP Status
Analog
And
Digital
Control
Analog Effects
&
DSP Effects
Toggles
The Instrument
Analog Comparison
System
Frequency Selector
Attack / Decay Control
Signal Routing
Analog Controls
Summing
Amp
Low Freq Oscillator
Digital
Controls
Analog Audio
Analog Control
Serial 16 bit Digital
Digital Control
DSP State
Analog Audio Output
Analog Effects
DSP
Processor
Power Supply
Pre Amp
Filter
DAC
Joe
Mike Kahnec
Jason
Bounnong
Standard Requirements
Market
• Economic
–
–
–
–
–
Total Market Size: $200,000
Estimated Annual Volume: 100
Minimum List Price: $2,000
Maximum Product Material Cost: $250
Maximum Production Cost: $200
• Marketing
– Market Geography: U.S.A.
– Market Demography: Musicians – Age 13 and
up
– Competitors: Roland, Yamaha, Tascam
Standard Requirements
Environmental
• Operating
– Temperature Range: 0 to 40 oC
– Humidity Range: 0 to 100 % R.H., N.C.
– Altitude Range: 0.5 to 1.5 ATM
• Storage
–
–
–
–
Temperature Range: -10 to 70 oC
Humidity Range: 0 to 100 % R.H., N.C.
Altitude Range: 0.5 to 1.5 ATM
Storage Duration of 1 year
Standard Requirements
Power
• Domestic
–
–
–
–
Operating Voltage Range: 102 to 138 VAC
Operating Frequency Range: 57 to 63 Hz
Maximum Power Consumption: 150 W
Connector Type: IEC 320 – C14
• Non-Domestic
–
–
–
–
Operating Voltage Range: 138 to 253 Vac
Operating Frequency Range: 47 to 53 Hz
Maximum Power Consumption: 150 W
Connector Type: IEC 320 – C14
Standard Requirements
Mechanical & Manufacturing
• Mechanical
– Maximum External Dimensions:
30.5 cm x 10.2 cm x 76.2 cm
– Maximum Product Mass: 5 kg
– Maximum Shock Force: 20 G’s
– Maximum Shock Repetitions: 20
• Manufacturing
–
–
–
–
Maximum Number of PCB’s: 2
Maximum PCB Area: 465 cm2
Maximum Part Count: 2000
Maximum Unique Parts: 200
Standard Requirements
Mechanical & Manufacturing
• Life Cycle
–
–
–
–
Product Lifetime: 10 years
Warranty Period: 90 days
Service Strategy: Factory repair
Product Disposal: Recycle or return to
manufacture
Performance Requirements
User Inputs
• Frequency Selector
–
–
–
Continuously variable selection
Frequency range of 1.5 octave per selector
Distance between chromatic notes between 2 and 5 cm
• Multiple Tap Selectors
–
–
Selectable effects processing
Patch synthesized audio through effect or bypass
• Analog Potentiometers
–
–
–
To control output amplitude
To set amplitude attack
To set amplitude decay
Performance Requirements
User Indicators and Displays
• Displays
–
–
–
–
DSP effect state indicator
Level of effect applied
3 digit minimum
Maximum perception distance of 1 meter
• LED Indicators
–
–
–
–
System on/off state
Analog effect state
Analog effect active
Digital effect active
Performance Requirements
Modes of Operation
Any Combination of Analog and Digital Effects
• Digital Effects
– On/off
– Effect
• Echo
• Distortion
• Auto-Wah
– Effect intensity
– Effect parameter
• Analog Effect
– On/off
– Adjustable overdrive intensity
Performance Requirements
Output Stage
• Output/Interface
–
–
–
–
–
–
–
Connector: ¼” phono jack
Output Resistance: 1 kW
Output Voltage (peak to peak): 4 V
Output DC offset: 0 VDC
Overall SNR: 95 dB
Overall THD: < 1 %
Frequency Range: 20 Hz to 20 kHz
Performance Requirements
Safety Requirements and Standards
• Requirements
– Low potential on exposed surfaces, < 0.1 mV
– Maximum surface temperature of less than 40 oC
• Standards
–
–
–
–
UL 469 Musical Instruments and Accessories
UL 1310 Class 2 power units
UL 1998 Software in Programmable Components
UL 486 Wire Connectors
EMC Standards
Standard
Description
Applies to
Block #
EN61001–3–3
Limitation of Voltage Fluctuation
and Flicker in Low-Voltage
Supplies < 16 A
Block 5
IEC61000–4–4
Electrical Fast Transient & Burst
Block 5
IEC61000–4–5
Power Input Surge Immunity
Block 5
IEC61000–4–8
Power Frequency Magnetic
Field Immunity
Block 5
IEC61000–4–11
Voltage Dip, Short Dropout &
Variation Immunity
Block 5
61000-4-2 EMC Part 4,
Section 2
ESD immunity tests
Blocks 1, 2, 3, 4
61000-4-7 EMC Part 4,
Section 7
General guide on harmonics
measurement and
instrumentation
Blocks 2, 3, 4
Resources
Time Resources
Parts
• 780 Resource Hours
• 175 Total Parts
• 57 Unique Parts
• Possible bulk price
decreases
– 12 hrs/week
– Initial Estimates
• 845 Resource Hours
– Mid-Semester Estimate
– 8.33% increase
Monetary Resources
• $250
– $50 per team member
• $250.22
– 0.09% increase
Reliability
Product Level
Block
λFITS
MTBF(yrs.)
Block 1
142.60
800.00
Block 2
1,169.11
97.57
Block 3
755.09
151.00
Block 4
2,678.55
43.3
Block 5
3,284.77
34.69
Totals:
7350.01
15.52
Reliability
Warranty
• Percentage of failed products within
warranty period is 10%
• λ=(1/ total MTBF)= 0.000136
• Using F (t )  1  et ,
the warranty period is 0.15 months
or 54 days
Reliability
Conclusions
• Total FITS: 7350.01
• Total MTBF: 15.52 years
• Components that dominate unreliability: Crystal
Oscillator, Digital Signal Processor, and a 4-to-1
Multiplexer
• To improve reliability
– Cool parts
– Reduce operating voltages
Frequency Selector
& Audio Signal Router
Joseph Spitz
The i1
Analog Comparison
System
Frequency Selector
Attack / Decay Control
Signal Routing
Analog Controls
Summing
Amp
Low Freq Oscillator
Digital
Controls
Analog Audio
Analog Control
16 bit Digital Audio
16 bit Digital Control
DSP State
Analog Audio Output
Analog Effects
Processor
Pre Amp
Filter
Including
ADC &
Memory
DAC
Power Supply
Joe
Mike Kahnec
Jason
Bounnong
Frequency Selector &
Audio Signal Router
Functional Description
• Allows user to play note
• Sums audio signals from the oscillator block into
one signal
• Controls the attack of the notes played
• Sends signals to the effects blocks
Frequency Selector &
Audio Signal Router
Block Requirements
Standard Requirements
Min. Operating Temperature Range
Min. Operating Humidity Range
0 to 60 ºC
0 to 100 % RH
Non-Condensing
Min. Storage Temperature Range
(-10) to 70 ºC
Min. Storage Humidity Range
0 to 100 % RH
Min. Operating Voltage Range Source 1
-10.5 to -9.5 VDC
Min. Operating Voltage Range Source 2
10.5 to 9.5 VDC
Max. Power Consumption
5W
Frequency Selector &
Audio Signal Router
Block Requirements cont.
Standard Requirements
Min. Operating Temperature Range
Min. Operating Humidity Range
0 to 60 ºC
0 to 100 % RH
Non-Condensing
Min. Storage Temperature Range
(-10) to 70 ºC
Min. Storage Humidity Range
0 to 100 % RH
Min. Operating Voltage Range Source 1
-10.5 to -9.5 VDC
Min. Operating Voltage Range Source 2
10.5 to 9.5 VDC
Max. Power Consumption
5W
Frequency Selector &
Audio Signal Router
Block Requirements Cont.
Performance Requirements
Frequency range per actuator
1.5 Octaves
Control Voltage to LFO
.5 to 2.5 VDC
Distance Between Notes
2.5 cm to 5 cm
Signal to Noise Ratio
95 dB
THD
< 0.2%
Frequency Response
20 to 20k Hz
Attack Range
No delay to max gain to 2 sec
delay to maximum gain
Frequency Selector &
Audio Signal Router
Block Diagram
Actuation by User
Position Sensor
DC
Signal
Effect Select/Bypass
Input
Audio Signal
Routing
To
To
To
Preamp DSP
Analog
Effects Distortion
Voltage
Scaling
DC Voltage
1 to 2.5V
To LFO
Attack Input
Audio Signal
2 V Amplitude
100 to 10KHz
Summing
Amplifier
Bus Of
Audio Signals
2 V amplitude
100 to 10KHz
Frequency Selector &
Audio Signal Router
Block Signal Tables
Power Signals
Power1 VCC +5
Power2 VCC -5
Analog Signals
Analog1 VCO Control Voltage
Audio From VCO
Audio to DSP
Audio to Analog
Audio from DSP
Audio from Analog Effects
Audio to Preamp
Type
Direction
DC Power
DC Power
Input
Input
Type
Analog
Analog
Analog
Analog
Analog
Analog
Analog
Voltage
Nominal
5.0V
-5.0V
Direction
Output
Input
Output
Output
Input
Input
Output
Voltage Range
Min
Max
4.75V
-4.75V
Coupling
Direct
Direct
Direct
Direct
Direct
Direct
Direct
5.25V
-5.25V
Freq
Nominal
DC
DC
Voltage Max
Amplitude
2.5V
4.0V
4.0V
4.0V
4.0V
4.0V
4.0V
Freq Range
Min
Max
0
0
N/A
N/A
Impedance
Min
Max
0.0ohms
6.8Ohms
950
5 Ohms
5 Ohms
950
5 Ohms
6kohms
9.2kOhms
1050
10 Ohms
10 Ohms
1050
10 Ohms
% V-Reg
Max
5.00%
5.00%
V-Ripple
Max
0.5V
0.5V
Freq Range
Min
Max
DC
10
20 Hz
20 Hz
20 Hz
20 Hz
20 Hz
DC
10Khz
20Khz
20Khz
20Khz
20Khz
20Khz
Current
Max
.5A
.5A
Leakage
Max
2uA
2uA
2uA
2uA
2uA
2uA
2uA
Frequency Selector &
Audio Signal Router
Block Diagram
Frequency Selector &
Audio Signal Router
Block Diagram
Frequency Selector &
Audio Signal Router
Design Calculation


2.378
x

 Rlo  R2
 Rhi  Rlo
50.8



Vo ( x) 
x
 R R
 Rlo  R2  R1
 hi lo
50.8


3
1
f ( n)
2
0.9997
V o ( x)
1
0.9996
1
0
0
10
n
15
Frequency vs. Chromatic Notes
n  ln ( 2)
f ( n)  e
12
10.9995
0
0
0.5
1
x
1
Transfer Function Graph
Frequency Selector &
Audio Signal Router
Design Calculation
Potentiometer Resistance:


R s ( x)  R hi  R lo x  R lo
Transfer Function for Vo:
 R hi  R lo x  R lo  R 2
V o ( x) 
 R hi  R lo x  R lo  R 2  R 1
Frequency Select Schematic
Frequency Selector &
Audio Signal Router
Design Calculation
Transfer Function for Vo:
 R hi  R lo x  R lo  R 2
V o ( x) 
 R hi  R lo x  R lo  R 2  R 1



R1  14.3 R2  .714
Frequency Select Schematic
0.107

Rhi  1
Rlo  .02
0.12
0.1
V o ( x) 0.08
0.06
0.0490.04
0
0.5
1
0
x
1
Graph of Transfer Function
Frequency Selector &
Audio Signal Router
Design Calculation
f ( n)
V onorm ( x) 
13.589
V o ( x)
12
V o ( 0)
10
Chromatic notes along
Potentiometer:

ln V onorm( x)
n x( x)  12 
ln( 2)
14
8

n x( x)
6
4
2
0
0
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
x
Graph of Notes Along Potentiometer
0.9
1
Frequency Selector &
Audio Signal Router
Design Calculation
f ( n)
13.589
14
12
Using 20 inch (50.8 cm)
Potentiometers:
10
8
n x( x)
6
4
2
0
0
0
0
5
10
15
20
25
30
35
40
45
x
Graph of Notes Along Potentiometer
50
50.8
Frequency Selector &
Audio Signal Router
Design Calculation
Multiply Signal to make it compatible with LFO Comparator:
 R hi  R lo x  R lo  R 2 10
V o ( x) 
 R hi  R lo x  R lo  R 2  R 1
Frequency Select Schematic
1.07
1.2
1
V o ( x) 0.8
0.6
0.488 0.4
0
0.5
1
0
x
1
Frequency Selector &
Audio Signal Router
Block Diagram
Frequency Selector &
Audio Signal Router
Block Diagram
Low-Frequency
Oscillator
Michael Haynes
The i1
Analog Comparison
System
Frequency Selector
Attack / Decay Control
Signal Routing
Analog Controls
Summing
Amp
Low Freq Oscillator
Digital
Controls
Analog Audio
Analog Control
16 bit Digital Audio
16 bit Digital Control
DSP State
Analog Audio Output
Analog Effects
Processor
Pre Amp
Filter
Including
ADC &
Memory
DAC
Power Supply
Joe
Mike Kahnec
Jason
Bounnong
Low Frequency Oscillator
Functional Description
• Receives a DC input and outputs an AC
voltage
• By using a Voltage-controlled Oscillator
(VCO), the DC input can control the output
frequency
• An analog comparison system is used to
ensure that no transients are heard after
releasing pressure on the main interface
Low Frequency Oscillator
Block Requirements
-Standard RequirementsMANUFACTURING
Max. number of parts
20
Max. parts and material cost
$30
Max. assembly and test cost
$20
Percentage of total product cost
10%
LIFE CYLE
Estimated maximum production lifetime
10 yrs.
Full warranty period
3 mon.
SAFETY STANDARDS
61000-4-7 EMC Part 4, Section 7-General guide on harmonics measurement and instrumentation
61000-4-2 EMC Part 4, Section 2- ESD immunity tests
Low Frequency Oscillator
Block Requirements
-Standard Requirements cont.MECHANICAL
Max. number of printed circuit boards
Max. block weight
Max. total PCB area
Percentage of final product PCB area
Max. shock force
1
5 oz.
465 cm2
25%
20 G’s
ENVIRONMENTAL
Min. Operating Temperature Range
Min. Storage Temperature Range
0 – 40 ºC
-5 to 65 ºC
Min. Operating Humidity Range
0 – 100 % N.C.
Min. Storage Humidity Range
0 – 100 % N.C.
Min. operating altitude range
0.5-1.5 atm.
Min. storage altitude range
0.5-1.5 atm.
Max. storage duration
1 yr.
Low Frequency Oscillator
Block Requirements
-Standard Requirements cont.ELECTRICAL
Analog Input Voltage Range
Analog Output Voltage Range
1.0 – 2.5 VDC
-1 to 1 VAC
Input Current Range
2 .5 – 750 uA
Output Current Range
0.1 – 500 mA
Max. Current into pins
+/- 50mA
Low Frequency Oscillator
Block Requirements
-Performance RequirementsPOWER INPUTS
Input Power Voltages
Power Input Tolerances
Max. Power Consumption
+/- 5 VDC
+/- 0.1 V
5W
ELECTRICAL INTERFACES
Analog Input Frequency Range
Analog Output Frequency Range
Output minimum SNR
Max. THD
0 – 10 Hz
20 Hz – 20 kHz
50 dB
5%
Min. Input Impedance
100Ω
Max. Output Impedance
10kΩ
Low Frequency Oscillator
Block Requirements
-Performance RequirementsAPPLICABLE USER INTERFACES
Types
Switch attributes
Switch, Knob
DPDT
MODES
Types of waveforms
Sinusoidal, Square, Triangle
PROPAGATION DELAYS
Comparator + Analog Switch
< 500ns
SAFETY
Features
Shock Isolation
Low Frequency Oscillator
Block Architecture
Voltage-Controlled Oscillator
1.0-2.5 VDC
VCO
0.5 VDC
Comparator
Analog Comparison System
SPDT
Analog
Switch
-1 to 1 VAC
Low Frequency Oscillator
Signals
Power
Power Signals
Power1 VCC +5
Power2 VCC (-)5
Type
Direction
DC Power
DC Power
Input
Input
Voltage
Nominal
5.0V
(-)5.0V
Voltage Range
Min
Max
4.5V
(-)6.5V
6.5V
(-)4.5V
Freq
Nominal
DC
DC
Freq Range
Min
Max
0
0
N/A
N/A
% V-Reg
Max
5.00%
5.00%
V-Ripple
Max
Current
Max
0.1V
0.1V
100mA
100mA
Analog
Analog Signals
Type
Analog1 Oscillator Control Voltage
Analog2 Oscillator Output
Analog2 Comparator Reference Voltage
Analog
Analog
Analog
Direction
Input
Output
Input
Coupling
Direct
Direct
Direct
Voltage Max
Amplitude
2.5V
1.0V
0.5V
Impedance
Min
Max
0.1ohms 6kohms
6.8ohms 9.2ohms
300ohms 354ohms
Freq Range
Min
Max
DC
20
DC
DC
9kHz
DC
Leakage
Max
2uA
N/A
2uA
Digital
Digital Signals
Type
Dir
Output
Input
Tech Freq
Logic Vih
Structure Structure
Nominal Voltage Min
Digital1 Comparator Digital Output N/A
Digital2 Pins A0-A1 Digital Input N/A
Digital3 Switch
Digital Input N/A
Standard TTL N/A
Standard TTL N/A
Standard CMOSN/A
5V
5V
5V
Input Characteristics
Output Characteristics
Iih ViL
IiL Vth Vth Voh Ioh VoL IoL
Max Max Max Min Max Min Max Max Max
2.9V 10uA 2.1V 10uA N/A
2.4V 5uA 0.8V 5uA N/A
1.8V N/A 0.8V N/A N/A
N/A
N/A
N/A
4.6V N/A
N/A N/A
N/A N/A
0.4V N/A
N/A N/A
N/A N/A
Low Frequency Oscillator
Complete Detailed Block Architecture
Low Frequency Oscillator
Design
CF
•
Remember that the targeted output
frequency range is 20 Hz to 20 kHz
•
Four interface strips will be used; this
means that four frequency ranges are
needed
•
The ranges are chosen to be:
- Strip 1: 220 Hz to 292 Hz
- Strip 2: 293 Hz to 390 Hz
- Strip 3: 391 Hz to 520 Hz
- Strip 4: 520 Hz to 645 Hz
•
These ranges correspond to notes that
can be played by an instrument and
are all in the audible frequency range
•
The output frequency is determined
by:
-Current into IIN pin
-Size of capacitor CF
-Input voltage
•
Known values:
-Input voltage has a range of 1.0-2.5 volts for sound
-CF is determined from the data sheet
-Need to know the Rin value for each frequency range
Low Frequency Oscillator
Design cont.
•
To get the oscillation frequency, Vin=1 to 2.5V, CF=0.1uF
F0 
•
•
•
•
VIN
VIN
 RIN 
RIN  C F
F0  C F
For Strip 1: Rin ~ 45.5kΩ
For Strip 2: Rin ~ 34.1kΩ
For Strip 3: Rin ~ 25.6kΩ
For Strip 4: Rin ~ 19.2kΩ
Low Frequency Oscillator
Design cont.
•
•
Producing different waveforms
-Pins A0 and A1 are TTL/CMOS compatible and set
the waveforms
-Can switch waveforms at any time
-Switching occurs within 0.3 μs
A0
A1
WAVEFORM
X
1
Sine wave
0
0
Square wave
1
0
Triangle wave
Fine tuning:
-Done with a 20kΩ potentiometer
-Causes output frequency to vary +/- 70% its value
Comparator
Design
• Used a comparator with
TTL/CMOS-compatible outputs
• Compares input voltage to a
0.5V reference voltage
• Designed to activate the switch
when the input voltage falls
below the reference voltage
Analog Switch
Design
• Used a SPDT CMOS analog
switch
• Operation
-In one position, no sound is at
block output
-In opposite position, oscillator
output is sent through to block
output
Comparator
Voltage Divider Tolerances
•
Reference voltage needs to be 0.5 V
Calculating resistor values for voltage divider:
• Input voltage range: 0-5 V
• Target Vout range from voltage divider: 0-1 V
• Need voltage divider to scale comparator
input voltage to between 0.4 and 0.6 V
-Choose Vout as 0.5V
-Vin is 5V
-Choose R1 to be 3kΩ
So, R1 is 3kΩ and R2 is 333Ω
•
Analysis at +/- 5% resistances:
-R1=2850Ω, R2=346.5Ω, Vout=0.54199 V
-R1 =3150Ω , R2=313.5Ω, Vout=0.45257 V
Conclusion: 5% resistor tolerances are sufficient to use
Vout 
( R 2)
*Vin
R1  R2
Low Frequency Oscillator Block
Analog Design For Manufacturing (DFM)
Plan
Applicable Worst Case Analysis Plan
Analog Circuit Type
Comparator
Voltage-Controlled Oscillator
Task 1
Max Offset
Voltage
Input
Impedance
3mV
300Ω
DC Gain vs
Gain vs
Component
Freq vs
Variations Comp Var
20%
Analog Switch
Task 2
1%
Max Offset
On
Voltage
Resistance
1mV
1Ω
Task 3
Task 4
Task 5
Semicond
Package &
Heatsink
SOIC
Phase vs
Freq vs
Comp Var
Slew rate
Pow er
Bandw idth
Semicond
Package &
Heatsink
1%
10kHz
SOIC
Semicond
Package &
Heatsink
SOIC
Task 6
Task 7
Task 8
Task 9
Low Frequency Oscillator Block
Passive Design
Passive Discrete Specifications
Nominal Value
Tolerance
Derated Pow er
or Max Value Around Nominal
Capacity
Maximum
Working
Voltage
Composition
Dielectric or
Form
Q Factor or
Frequency
Variation
Component
Resistor
333Ω, 3kΩ,
10kΩ
20kΩ, 51Ω
5%
1%
0.25 W
0.25 W
N/A
N/A
Carbon Film
Metal Film
N/A
N/A
Potentiometer
20kΩ
5%
0.5W
N/A
N/A
N/A
5%
N/A
50 VDC
Ceramic
1
Fixed Capacitor 1uF, 1nF
Low Frequency Oscillator Block
Total Product Bill of Materials
Generic Name
Mfg 1
Part #
Comparator
Maxim
Analog Switch
Advanced
Linear
Devices ALD4202M
MAX944CSA
TH/SMT Package Plcmnt
SMT
SMT
High-Frequency
Waveform
Generator
Maxim
MAX038CWP SMT
1uF Capacitor
Kemet
C315C473M5U5CA
SMT
1nF Capacitor
Kemet
C315C473M5U19CA
SMT
100nF Capacitor
Kemet
C1805P103K1XRH7189
SMT
51Ω Resistor
Yageo
9C12063A51R0FKHFT
SMT
120kΩ Resistor
Yageo
RC1206FR-0712KL
SMT
47kΩ Resistor
Yageo
RC1206FR-0712KL
SMT
18kΩ Resistor
Yageo
RC1206FR-0712KL
SMT
6.76kΩ Resistor
Yageo
RC1206FR-0712KL
SMT
330Ω Resistor
Yageo
9C12063A3300JLHFT
SMT
3kΩ Resistor
Yageo
RC1206JR-073KLSMT
20kΩ Potentiometer Yageo
RC1206FR-0712KL
SMT
Toggle Switch
Radio Shack
275-653
SMT
SOIC
Auto
SOIC
Auto
SOIC
1210
1210
1210
1210
1210
1210
1210
1210
1210
1210
1210
N/A
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Tot. Area:
Area mm 2
Description Attributes
Rail-to-rail
40 Compares 2 inputs
output
Make-beforeBreak
capability;SPDT
40 Switch
Outputs a
waveform at 0.1Hz to 20MHz
a particular operating
60 frequency
frequency range
4 Bypass
4 Bypass
4 Adjusts freq.
4 Eliminates capacitance
4 Determines Iin
4 Determines Iin
4 Determines Iin
4 Determines Iin
4 Divides voltage
4 Divides voltage
4 Fine tuning
5 DPDT
189
Tol%
QTY Tot.Cost
N/A
4
$1.60
N/A
4
$1.50
N/A
N/A
N/A
N/A
1%
1%
1%
1%
1%
5%
5%
5%
N/A
4
12
8
4
4
4
4
4
4
4
4
4
1
$9.56
$0.36
$0.72
$0.36
$0.02
$0.02
$0.02
$0.02
$0.02
$0.02
$0.04
$0.20
$1.75
Tot. Cost
$64.84
Low Frequency Oscillator Block
Reliability Plan
QTY Generic Name
4 Comparator
4 Analog Switch
High-Frequency
Waveform
4 Generator
12 1uF Capacitor
8 1nF Capacitor
4 100nF Capacitor
4 20kΩ Potentiometer
4 51Ω Resistor
4 20kΩ Resistor
4 47kΩ Resistor
4 18kΩ Resistor
4 20kΩ Resistor
4 3kΩ Resistor
4 330Ω Resistor
4 3kΩ Resistor

pT
Ta
Tr
Va
1
55 70 38.72 N/A
1
55 70 38.72 N/A
1
0.25
0.25
0.25
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
55
50
50
50
50
50
50
50
50
50
50
50
50
70
70
70
70
70
70
70
70
70
70
70
70
70
pV
pE
Vr
N/A 1.00 2.5
N/A 1.00 2.5
38.72 N/A N/A 1.00
11.78
5
16 0.21
11.78
5
16 0.21
11.78
5
16 0.21
11.78
5 150 0.14
11.78
5 150 0.14
11.78
5 150 0.14
11.78
5 150 0.14
11.78
5 150 0.14
11.78
5 150 0.14
11.78
5 150 0.14
11.78
5 150 0.14
11.78
5 150 0.14
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
pQ Subtotals
1.25
44.47
1.25
44.47
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
FITS
177.89
177.89
44.47
16.00
16.00
16.00
15.72
15.72
15.72
15.72
15.72
15.72
15.72
15.72
15.72
177.89
191.95
127.97
63.98
62.89
62.89
62.89
62.89
62.89
62.89
62.89
62.89
62.89
Tot. FITS:
MTBF:
1483.57
97.57 Yrs
Low Frequency Oscillator Block
Reliability Assessment
• For the entire block:
-FITS: 1169.11 failures per 109 hours
-MTBF: 97.57 mean years before failure
• The comparator, switch, and the high-frequency waveform generator
all have high λ and thus dominate the unreliability of the block
-Because these components are IC’s, they encounter more stress
than other less demanding parts such as resistors
•
How to improve reliability:
-Cool the parts with a heat sink
-Use mil spec/range parts
Low Frequency Oscillator Block
Obsolescence
μ
σ
μ +2.5σ
μ +3.5σ
2001.5
7.8
2021
2029
1995
6.5
2011
2018
Voltage:(5V)
1997.5
5.3
2011
2016
Technology:
(CMOS)
2010.0
12.5
2041
2054
μ
σ
μ +2.5σ-p
μ +3.5σ-p
2003.0
11.1
2031
2042
1995
6.5
2011
2018
Voltage:(5V)
1997.5
5.3
2011
2016
Technology:
(CMOS)
2010.0
12.5
2041
2054
Maxim MAX038
Primary attribute:
Waveform
Generator
Secondary attribute:
Package:(SOIC)
Maxim MAX944
Primary attribute:
Comparator
Secondary attributes:
Package:(SOIC)
Low Frequency Oscillator Block
Obsolescence
μ
σ
μ +2.5σ
μ +3.5σ
2001.7
10.7
2028
2039
1995
6.5
2011
2018
Voltage:(5V)
1997.5
5.3
2011
2016
Technology:
(CMOS)
2010.0
12.5
2041
2054
Maxim Max4855
Primary attribute:
Analog Switch
Secondary attribute:
Package:(SOIC)
Resistor
μ
σ
μ +2.5σ
μ +3.5σ
Primary attribute:
Carbon Film
1980
8.5
2001
2010
Secondary attribute:
N/A
N/A
N/A
N/A
N/A
Low Frequency Oscillator Block
Obsolescence
Potentiometer
μ
σ
μ +2.5σ
μ +3.5σ
Primary attribute:
Variable Resistor
1985
10.0
2010
2020
Secondary attribute:
N/A
N/A
N/A
N/A
N/A
μ
σ
μ +2.5σ
μ +3.5σ
Capacitor
Primary attribute:
Ceramic
1980
14
2015
2029
Secondary attributes:
N/A
N/A
N/A
N/A
N/A
μ
σ
μ +2.5σ
μ +3.5σ
Resistor
Primary attribute:
Metal Film
1990
12.0
2020
2032
Secondary attribute:
N/A
N/A
N/A
N/A
N/A
Low Frequency Oscillator Block
Obsolescence Summary
• As can be seen, the analog switch and the comparator
have long sustainability times
• This means they will not need to be replaced soon
Low Frequency Oscillator
Testing
• Tests performed on LFO Block
-Verify that 0.5 reference voltage enters comparator
-Verify input voltage range to VCO is 1.0-2.5 volts
-Verify output of the block is 2 Vpp
-Verify output frequency is within range
-Verify each waveform
-Verify fine tuning adjustment
-Make sure the switch does not click
-Make sure that the output sound is cutoff when the interface is off
Low Frequency Oscillator Block
PCB Layout Using ExpressPCB
Low Frequency Oscillator Block
Verification
Low Frequency Oscillator Block
Verification
Low Frequency Oscillator Block
Verification
Analog Effects
& Preamp
Kahnec De La Torre
The i1
Analog Comparison
System
Frequency Selector
Attack / Decay Control
Signal Routing
Analog Controls
Summing
Amp
Low Freq Oscillator
Digital
Controls
Analog Audio
Analog Control
16 bit Digital Audio
16 bit Digital Control
DSP State
Analog Audio Output
Analog Effects
Processor
Pre Amp
Filter
Including
ADC &
Memory
DAC
Power Supply
Joe
Mike Kahnec
Jason
Bounnong
Analog Effects & Preamp
Functional Description
Analog Effects
– Provides additional sound effects through analog circuit
– Operates over 3 decade range (20 to 20kHz)
– User interface – Tone control
Preamp
– Volume is controlled at the user interface
– User interface – Volume Control
Analog Effects & Preamp
Block Requirements
Standard Requirements
0 to 40 ºC
Min. Operating Temperature Range
Min. Operating Humidity Range
0 to 100 % RH
Min. Storage Temperature Range
(-10) to 70 ºC
Min. Storage Humidity Range
0 to 100 % RH
Min. Operating Voltage
Range Source 1
Load Current Max
Min. Operating Voltage
Range Source 2
Load Current Max
Min. Operating Voltage
Range Source 3
Load Current Max
Max. Power Consumption
0.15A
0.5mA
0.5A
5.67 to 6.93
VAC
<0.1V
Ripple
114 to 126
VDC
<0.25V
Ripple
4.75 to 5.25
VDC
<0.1V
Ripple
5W
Analog Effects & Preamp
Block Requirements
Standard Requirements
Manufacturing Life
10 Years
Mechanical Life
5 Years
Safety
• UL 469 Musical Instruments and Accessories
• UL 486 Wire Connectors
EMC
• 61000-4-2 EMC Part 4, Section 2
• 61000-4-7 EMC Part 4, Section 7
Analog Effects & Preamp
Block Requirements
Performance Requirements
Analog Effects:
Controlled by Voltage
- 2V to +2V
Signal to Noise Ratio
95 dB
Output to Signal Routing Block
Analog Effect
- 2V to + 2v
Multiple 2nd order harmonics
Input Impedance
10 k Ohm
Output Impedance
1 k Ohm
Analog Effects & Preamp
Block Requirements
Performance Requirements
Preamp:
Output Connector
Output voltage –
Total Harmonic Distortion
Signal to Noise Ratio
Output Frequency Range
¼ inch phono jack
- 2V to +2V
< 0.2 % (20 to 20kHz)
95 dB
20 Hz to 20 kHz
Input Impedance
10 kΩ
Output Impedance
1 kΩ
Volume Control (Gain Range)
Unity to -27 dB
Including Mute
Analog Effects & Preamp
Block Diagram
Audio Effect in
From
Signal Router
Analog Control
Vacuum Tube
preamp
Attenuator
Analog
Signal
to
Signal Router
Preamp in from
Signal Router
Preamp
Volume Control
Passive Noise Filter
Analog Effects & Preamp
Signal Interfacing
Power Signals
Heater Voltage + 6.3 V
Plate Voltage + 100 V
Preamp Voltage + 5V
Preamp Voltage - 5V
Digital Signals
Digital Volume
Analog Signals
Audio Input
Audio Output
Type
AC Power
DC Power
DC Power
DC Power
Type
Digital
Type
Analog
Analog
Direction
Input
Input
Input
Input
Direction
Input
Direction
Input
Output
Voltage
Nominal
6.3V
120V
5V
5V
Voltage Range
Min
Max
5.67V
6.93V
114V
126V
4.75V
5.25V
4.75V
5.25V
Freq
Nominal
DC
DC
DC
DC
Output
Structure
N/A
Input
Structure
Standard
Freq
Logic
Input Characteristics
Nominal Voltage Vih Min Iih Max ViL Max IiL Max
22.0 Mhz 5V
2.0V
400uA
0.8V
-1.2mA
Coupling
Direct
Direct
Tech
TTL
0
0
0
0
Freq Range
Min
Max
N/A
N/A
N/A
N/A
Voltage Max
Impedance
Freq Range
Amplitude
Min
Max
Min
Max
4.0V
950 ohms 1050 ohms 10 Hz
20 kHz
2.0V
950 ohms 1050 ohms 10 Hz
20 kHz
% V-Reg
Max
5.00%
5.00%
5.00%
5.00%
Leakage
Max
8 uA
8 uA
V-Ripple
Max
0.1V
0.25V
0.1V
0.1V
Current
Max
0.15A
0.5mA
0.5A
0.5A
Analog Effects & Preamp
Analog Effect Circuit
Analog Effects & Preamp
Attenuator
Voltage divider gives ~2.6% of large signal
from tube section.
Q
Analog Effects & Preamp
Preamp
Volume
Control
Tone Control
¼ inch
Audio Jack
Analog Effects & Preamp
Preamp Analysis
Gain
Vin
I1 
R1  R2
VO  I1  RB
VO
RB

Vin R1  R2
VO
2k


Vin 1M  2k
 0.001996  27 dB
High Pass
1
c  2pf 
RC
R  20kW
C  0.8mF
f  9.9 Hz
Low Pass
Tone Control
c  2pf 
1
RC
C  8nF
R1  1kW
R 2  6kW
f c1  19.8kHz
f c2  3.3kHz
Analog Effects & Preamp
Passive Component Specifications
Component
Nominal
Value or Max
Value
Resistor
2k, 10k,
47k, 100k
Ohm
Potentiometer
2M Ohm,
1M Ohm
Fixed/Bypass
Capacitor
0.1u, 5u
10u, 100u
10n
Adjust
ment
Range,
%/Turn
9%
Tolerance
Around
Nominal
Derated
Power
Capacity
Max
Working
Voltage
Composition
Dielectric or
Form
Pkg
1% ¼ W
Carbon
Film
Axial
5% ¼ W
Carbon
Film
Axial
Electrolytic
Axial
5%
5V,
400V
Analog Effects & Preamp
Bill Materials
QTY
Generic Name
Package
Place
Area
mm2
2
lm833 opamp
8-DIP
Auto
65.8
6
0.1 uF ceramic capacitors
axial
Auto
16
1
0.1 uF capacitor
Axial
Auto
1
1k ohm resistor
Axial
Auto
1
100u
Axial
1
12ax7 vacuum tube
1
Attributes
Tol%
16V
Cost
Total Cost
$0.48
$0.96
$0.09
$0.54
600V
5
$1.28
$1.28
3.8
1 W 5% tol
5
$0.42
$0.42
Auto
16
25V 10% tol
10
$0.22
$0.22
other
Manual
387
$7.95
$7.95
75k Ohm resistor
Axial
Auto
3.8
1/4W
5
$0.44
$0.44
1
47k Ohm resistor
Axial
Auto
3.8
1/4w
5
$0.28
0.28
3
20k Ohm resistor
Axial
Auto
3.8
5
$0.22
0.66
2
2k ohm resistor
Axial
Auto
3.8
1W 5% tol
5
$0.16
$0.32
1
150k
Axial
Auto
4.4
1w
5
.28
$0.28
2
Potentiometer
6mm Squared
Auto
36
0.5W 1M ohm
10
$0.88
$1.72
528.4
Totals
$15.07
Analog Effects & Preamp
PCB Layout
Pot
Pot
12AX7
Vacuum
Tube
LM833 op amps
528 cm2
Analog Effects & Preamp
Manufacturing & Testing Considerations
The 12AX7 Vacuum Tube
– Consider buying pre-tested tubes.
– Or must test tubes prior to assembly.
Analog Effects & Preamp
Even Order Harmonics
Digital Effects
Jason Knedlhans
The i1
Analog Comparison
System
Frequency Selector
Attack / Decay Control
Signal Routing
Analog Controls
Summing
Amp
Low Freq Oscillator
Digital
Controls
Analog Audio
Analog Control
16 bit Digital Audio
16 bit Digital Control
DSP State
Analog Audio Output
Analog Effects
DSP
Processor
Power Supply
Pre Amp
Filter
DAC
Joe
Mike Kahnec
Jason
Bounnong
Digital Effects
Functional Description
• Allows user to add digital audio effects to the
original audio signals created by oscillators
• Converts analog audio signal to a digital
signal
• Applies digital effects
– Distortion
– Echo
– Auto Wah
• Audio is then converted to an analog signal
for final output stage.
Digital Effects
Block Requirements
Standard Requirements
Min. Operating Temperature Range
Min. Operating Humidity Range
Min. Storage Temperature Range
0 – 40 ºC
0 – 100 % N.C.
-10 – 70 ºC
Min. Storage Humidity Range
0 – 100 % N.C.
Min. Source 1 Voltage Range
Min, Source 1 Current Draw
4.75 – 5.25 VDC
800 mA
Min. Source 2 Voltage Range
Min. Source 2 Current Draw
-5.25 – -4.75 VDC
200 mA
Max. Power Consumption
500 mW
Digital Effects
Block Requirements
Standard Requirements
Max. Parts and Material Costs
$50
Max. Manufacturing Costs
$20
Max. PCB Area
120 cm2
Max. Block Area
120 cm2
Max. User Interface Voltage
Block Lifetime
Service Strategy
.01 μV
10 years
Factory Repair
EMC Requirements
61000-4-2 EMC Part 4, Section 2
61000-4-7 EMC Part 4, Section 7
Safety Requirements
UL 469 Musical Instruments and
Accessories
Digital Effects
Block Requirements
Performance Requirements
Input & Output Audio Frequency Range
20 Hz to 20 kHz
Input & Output Voltage Range
+/- 4 V
Minimum Throughput
50 ms
Minimum Sampling Rate
44.1 kHz
Max. Input Impedance
20 kW
Max. Output Impedance
1 kW
Minimum THD @ 1kHz
0.3 %
Minimum SNR
95 dB
Digital Effects
Block Requirements
Performance Requirements
Processor Requirements
Digital Word Length
Minimum Instructions Per Second
16 bits
10 MIPS
Direct bit Input
Yes
Multiply Function
Yes
Preferred Serial Interfaces
Memory Size
SPI, DCI, I2C, Standard
4 Wire
> 2 Kbytes
Digital Effects
Block Diagram
Analog
Input
± 2V
Antialiasing Serial
Filter
ADC
4
Digital
Controls
DSP
Analog
Output
± 2V
Processor
DAC
Serial
Memory
Serial
DSP State
Digital Effects
Block Signal Table
Power Signals
Type
Power1 VCC +5
Power2 VCC -5
DC Power
DC Power
Analog Signals
DAC
Discrete bit Inputs
Input
Input
Type
Analog 1 Input
Analog 2 Output
Digital Signals
Direction
Analog
Analog
Type
Digital
Digital
Direction Output
Input
Structure Structure
Output
Input
Tech
Voltage
Nominal
Voltage Range
Min
Max
5.0V
-5.0V
Direction
Input
Output
4.75V
-4.75V
Coupling
Direct
Direct
5.25V
-5.25V
Freq
Nominal
DC
DC
Voltage Max
Amplitude
4.0V
4.0V
Freq Range
Min
Max
0
0
N/A
N/A
5.00%
5.00%
Impedance
Min
Max
6.8ohms
5ohms
% V-Reg
Max
V-Ripple
Max
0.1V
0.1V
Freq Range
Min
Max
9.2kohms DC
10ohms
DC
10 kHz
10 kHz
Current
Max
1A
1A
Leakage
Max
8 uA
8 uA
Freq
Logic
Input Characteristics
Output Characteristics
Nominal Voltage Vih Min Iih Max ViL Max IiL Max Vth Min Vth Max Voh Min Ioh Max VoL Max IoL Max
Totem PoleStandard BiCMOS 20.0Mhz 5 V
Open Col/Drain
Standard TTL
DC
5V
4.3 V
4.3 V
400 uA
400 mA
0.7 V
0.7 V
-1.2 mA 5 V
-5 mA
4.3 V
5.5 V
5V
0V
N/A
-4mA
N/A
5V
N/A
4mA
N/A
Digital Effects
Overall Block Schematic
Digital Effects
Analog DFM Plan
Sub Circuit
Type
Applicable Worst Case Analysis Plan
(See DFM Analysis Guide)
Task 1
Task 2
Task 3
Task 4
Task 5
Task 6
Task 7
Input Signal
Conditioning
Audio ADC
R, L & C Tol
RLC Specs
Gain vs Freq
Gain
Bandwidth
Input Z
Output Z
DC Offset Voltage
Volume Control
Max Offset
Voltage
Input Z
Over Current
Protect
Parameter
Control
Max Offset
Voltage
Input Z
Over Current
Protect
Audio DAC
R, L & C Tol
RLC Specs
Sample/Hold
Required?
Effect Select
Max Offset
Voltage
Input Z
Over Current
Protect
Display
Controller
Output
Current
Available
Over Current
Protection
Noise
Ripple
Digital Effects
Input Stage Calculations
  2.5 vi 
vo   R f 
 
R
Ri 
 s
  2.5 2 
0  10kW
 
R
Ri 
 s
Rs 
2. 5
Ri
2
 2.5 
Rs  
8.88kW
 2 
Rs  10kW
Rs  Rd Rd  Ro
10kW 
Rd
 Ro
2
R0  1kW
Rd  18kW
  2.5 vi 
vo   R f 
 
R
Ri 
 s


  2.5  2 

5  10kW

 2.5 R Ri 


i
 2

Ri  8kW
fo 
1
2pRC
1
2p 4.02kWC
C  1.799nF
22kHz 
C  1.8nF
f 0  21.994kHz
Vi: -2 to 2 V
Vo: 0 to 5 V
Need for a 2.5 V dc offset
Inverting Amplifier
Digital Effects
Input Stage Worst Case Analysis
voMINMIN
voMINMIN
voMINMIN
voMINMIN




 2.5
2
V
 10k *1.01

 1k  18.2k 0.99 4.02k  4.02k  *1.01




2 


 0.0374V
Low End Worst
Case Analysis




 2.5
2

V
 10k *1.01

 1k  18.2k 1.01 4.02k  4.02k  * 0.99 




2 


 0.0633V
voMAX MIN
voMAX MIN
High End Worst
Case Analysis
voMAX MAX
voMAX MAX


 2.5
 10k * 0.99 
 1k  18.2k


2

 4.8739V


2
V


4.02k  4.02k  *1.01

1.01





 2.5
 10k *1.01
 1k  18.2k


2

 5.0031V


2
V


4.02k  4.02k  * 0.99 

0.99



Digital Effects
Input Stage Waveforms
Digital Effects
Output Stage Calculations
Inverting Amplifier
Input: 0 to 5 V
Zero crossing created by
coupling capacitor
Vi: -2.5 to 2.5 V
Vo: -2 to 2 V
 vi 
vo   R f  
 Ri 
  2.5 

2  21kW
 Ri 
Ri  26.1kW
Digital Effects
Output Stage Worst Case Analysis
voMAX
voMAX
voMIN
voMIN
2.5


 21k *1.01

 26.1k * 0.99 
 2.0521V
2.5


 21k * 0.99

 26.1k *1.01 
 1.9717V
Digital Effects
Output Stage Waveforms
Digital Effects
Digital DFM – Timing Analysis
Timing Parameters
Digital
Signal
Output
Type
Input
Type
Tsu
Setup
Th
Hold
Tsu
Margin
Th
Margin
F
max
F
Margin
Tpulse
Min
Tpulse
Margin
DSP
Master
(SPI)
Serial
Serial
20 ns
20 ns
10 ns
10 ns
30 MHz
5 MHz
20 ns
50 ns
ADC Slave
(SPI)
Serial
15 ns
10 ns
15 ns
10 ns
20 MHz
7 MHz
20 ns
50 ns
15 ns
10 ns
15 ns
15 ns
20 MHz
7 MHz
0 ns
100 ns
100 ns
0.9 ms
10 ns
10 ns
1 MHz
-10 Hz
+10 Hz
20 ns
50 ns
100 ns
15-900 ns
15 ns
15 ns
400 kHz
-5 Hz
+5 Hz
0 ns
50 ns
Serial
DAC Slave
(SPI)
DSP
Master
(I2C)
Display
Controller
(I2C)
Serial
Serial
Checked
Digital Effects
Digital DFM – DC Drive Analysis
DC Drive Device Parameters
Digital
Device
Output
Type
DSP I2C
Output
Digital
Serial
DSP SPI
Digital
Serial
DAC (SPI)
Input
Type
Tech
Type
Vil
max
Vih
min
Iil (-)
max
Iih
max
Vol
max
Voh
min
Iol
max
Ioh (-)
Min
Vhyst
CMOS
0.2VDD
0.6VDD
-1 mA
1 mA
0.6
VDD – 0.7
25 mA
-25 mA
0.05VDD
Digital
Serial
CMOS
0.2VDD
0.6VDD
-1 mA
1 mA
0.6
VDD – 0.7
25 mA
-25 mA
0.05VDD
Analog
Digital
Serial
CMOS
0.2VDD
0.7VDD
-2 mA
2 mA
0.01 V
VDD
25 mA
-25 mA
0.05VDD
ADC (SPI)
Digital
Serial
Analog
CMOS
0.01V
VDD
-25mA
25mA
0.2VDD
0.7VDD
1mA
-1mA
0.07VDD
Display
Controller
(I2C)
Analog
Digital
Serial
BiMOS
0.8V
2.1V
-1 mA
1 mA
N/A
N/A
4.4 mA
-25 mA
0.05VDD
Checked
Digital Effects
Digital DFM – DC Drive Verification
DC Drive Device Parameters
Interface
Vilmax –Volmax
DSP – Display
Controller (I2C)
0.8 V – 0.6 V = 0.2 V
5.3 V – 2.1 V = 3.2 V
25 mA – 1 mA = 24.999 mA
25 mA – 1 mA = 24.999 mA
DSP – DAC (SPI)
0.8 V – 0.6 V = 0.2 V
5.3 V – 3.5 V = 1.8 V
25 mA – 2 mA = 23 mA
25 mA – 2 mA = 23 mA
ADC – DSP (SPI)
1V–1V=0V
3.5 V – 3 V = 0.5 V
25 mA – 1 mA = 24 mA
25 mA – 1 mA = 24 mA
Vohmin - Vihmin
Iolmax - |Iilmin|
|Iohmin| - Iihmax
Digital Effects
I2C Concerns
Pull Up Resistors
Current drawn by Rp must be greater than minimum sink current of 3 mA
Rp MAX 
 tR
 300n sec

 2.5kW
CB * ln( 1  (VILMAX  VDDMAX )) 100 pf * ln( 1  0.7)
In a 400 kHz system, a rise time of 300 nsec must be maintained
Rp MIN 
VDDMAX  VOLMAX
I OL

5.25  0.4
 1.616kW
3mA
Improved ESD Susceptibility
Rs must be low enough that at VOL the voltage at the input pin is
not lower than VIL
Rs MAX 
VILMAX  VOLMIN
I OLMAX

0.3VDD  0.4
 366W
3mA
Digital Effects
SPI Prescaler Calculations
FSCK
FSCK
FCY

P.P. * S .P.
 20MHz
To insure reliable function
FSCK is chosen to be 10 MHz
FSCK  10 MHz
FCY  20 MHz
10 MHz 
P.P.  1
S .P.  2
20 MHz
1* 2
Digital Effects
Firmware Flowchart
Digital Effects
Bill of Materials
QTY
Mfg 1
Mfg 1 Part #
TH/SMT
100 kW Resistor
18.2 kW Resistor
21 W Resistor
1 kW Resistor
4.02 kW Resistor
4.87 kW Resistor
10 kW Resistor
21 kW Resistor
26.1 kW Resistor
0.1 mF Capacitor
1 mF Capacitor
1 nF Capacitor
Zener Diode
Potentiometer
Yageo
Yageo
Yageo
Yageo
Yageo
Yageo
Yageo
Yageo
Yageo
Kemet
Yageo
AVX
ON Semiconductor
Panasonice
RC0603JR-07100KL
9T06031A1822FBHFT
RC0805FR-0721RL
RC0805FR-071KL
9C08052A4021FKHFT
9C08052A4871FKHFT
RC0603FR-0710KL
RC0805FR-0721KL
RC0805FR-0726K1L
C0603C104M4RACTU
CC1206KKX7R7BB105
0201YC102KAT2A
MMSZ5228BT1
EVL-HFAA01B24
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
TH
TH
0603
0603
0805
0805
0805
0805
0603
0805
0805
0603
1 ADC
3 Display Digits
Analog Devices
LITE-ON INC
AD7675ACP
LTS-312AHR
SMT
SMT
SOIC
SOT
Auto
Auto
1 DAC
1 Dual Op Amp IC
Microchip
Analog Devices
MCP4922
AD8552ARUZ-REEL
SMT
SMT
QSOP
SSOP
Auto
Auto
1 Display Controller Dallas Semiconductor MAX6956
1 SP4T Switch
ITT Industries/C&K Div A10415RSMCGE
SMT
TH
SSOP
DIP
Auto
Manual
1 Digital Signal Processor
Microchip
1 Crystal Oscillator Connor-Winfield
TH
SMT
DIP
UMLP
Auto
Auto
4
2
1
1
1
1
1
1
1
7
2
1
1
2
DSPIC30F3014
CWX813-20.0M
Package
Area mm 2 Attributes
Placement
Generic Name
0201
0603
DIP
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
1206 Auto
Auto
Auto
Manual
36
1.53
2.835
5.44
1.53
3.01
3.01
1.53
1.53
1.53
1.296
1.206
0.18
3.86 Zener
169 Variable
16 bit >44.1 kSps,
47.25 serial SPI
184.69 Red
16 bit >44.1 kSps,
28.89 serial SPI
19.11 Rail-to-rail
30.77 At least 28 outputs
196 Low bounce
16 bit 30 MHz,
188 SPI, I2C
35 20 MHz
927.197 Totals
Total Part Count: 36
Unique Part Count: 22
Tol% $Cost/One $Cost Total
5
1
1
1
1
1
1
1
1
20
10
10
$0.0033
$0.0122
$0.0048
$0.0054
$0.0054
$0.0054
$0.0048
$0.0054
$0.0054
$0.0090
$0.0910
$0.0450
$0.0460
$2.0700
$0.0132
$0.0243
$0.0048
$0.0054
$0.0054
$0.0054
$0.0048
$0.0054
$0.0054
$0.0630
$0.1820
$0.0450
$0.0460
$4.1400
$13.2800
$0.7230
$13.2800
$2.1690
$2.0000
$1.7100
$2.0000
$1.7100
$3.3300
$4.9190
$3.3300
$4.9190
$7.3900
$1.5100
$7.3900
$1.5100
$40.8581
Digital Effects
Reliability Analysis
QTY Generic Name
4
2
1
1
1
1
1
1
1
7
2
1
1
2
1
3
1
1
1
1
1
1
100 kW Resistor
18.2 kW Resistor
21 W Resistor
1 kW Resistor
4.02 kW Resistor
4.87 kW Resistor
10 kW Resistor
21 kW Resistor
26.1 kW Resistor
0.1 mF Capacitor
1 mF Capacitor
1 nF Capacitor
Zener Diode
Potentiometer
ADC
Display Digits
DAC
Dual Op Amp IC
Display Controller
SP4T Switch
Digital Signal Processor
Crystal Oscillator
TH/SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
TH
TH
SMT
SMT
SMT
SMT
SMT
TH
TH
SMT
Package
0603
0603
0805
0805
0805
0805
0603
0805
0805
0603
0603
0201
0603
DIP
SOIC
SOT
QSOP
SSOP
SSOP
DIP
DIP
SOIC
Placement
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Manual
Auto
Auto
Auto
Auto
Auto
Manual
Auto
Auto
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.25
0.25
0.25
18.8
1
1
165
1
1
1
1
21
15
Ta155
155
155
155
155
155
155
155
155
155
125
125
125
150
150
125
150
85
125
125
150
85
85
pT
Tr60 4.7119
40
3.45
40
3.45
40
3.45
40
3.45
40
3.45
40
3.45
40
3.45
40
3.45
40
3.45
40
3.95
40
3.95
40
3.95
40
3.51
40
3.51
40
3.95
40
3.51
40
6.21
40
3.95
40
3.95
40
3.51
40
6.21
40
6.21
Vr
5.25
2.75
1.35
2.75
2.75
2.75
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
pV
Va50 0.152181
75
0.14
150
0.14
150
0.14
150
0.14
150
0.14
150
0.14
150
0.14
150
0.14
150
0.14
16
0.21
16
0.21
16
0.21
20
0.19
120
0.14
7
1.65
10
0.37
7
1.65
7
1.65
7
1.65
200
0.14
200
0.14
7
1.65
pE2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
p1.25
Q
Subtotals
1.25
0.08
1.25
0.07
1.25
0.07
1.25
0.07
1.25
0.07
1.25
0.08
1.25
0.08
1.25
0.08
1.25
0.08
1.25
0.66
1.25
0.66
1.25
0.66
1.25
38.95
1.25
1.55
1.25
20.36
1.25
665.88
1.25
32.01
1.25
20.36
1.25
20.36
1.25
1.52
1.25
56.60
1.25
480.09
Total FITS
MTBF: 373336 hours or ~42.5 years
Crystal Oscillator creates greatest amount of FITS
Use ceramic oscillator
FITS
0.30
0.15
0.07
0.07
0.07
0.08
0.08
0.08
0.08
4.61
1.32
0.66
38.95
3.10
20.36
1997.63
32.01
20.36
20.36
1.52
56.60
480.09
2678.55
Digital Effects
Sustainability
Device
m
s
m+2.5s-p
m+3.5s-p
Metal Film Resistors
Primary Attributes:
Device Type (Metal Film)
Secondary Attributes: Technology
Package
Voltage
1990
N/A
N/A
N/A
12
N/A
N/A
N/A
14
N/A
N/A
N/A
26
N/A
N/A
N/A
Ceramic Capacitors
Primary Attributes:
Device Type (Ceramic Capacitor)
Secondary Attributes: Technology
Package
Voltage
1980
N/A
N/A
N/A
14
N/A
N/A
N/A
9
N/A
N/A
N/A
23
N/A
N/A
N/A
Zener Diode
Primary Attributes:
Device Type (Specialty Consumer)
Secondary Attributes: Technology
Package
Voltage
2001.5
1975
1987
1997
7.8
12.5
7.8
4.2
15
0.25
0.5
1.5
22.8
12.75
8.3
5.7
Potentiometer
Primary Attributes:
Device Type (Other R, L, C’s)
Secondary Attributes: Technology
Package
Voltage
1985
N/A
N/A
N/A
10
N/A
N/A
N/A
4
N/A
N/A
N/A
14
N/A
N/A
N/A
ADC
Primary Attributes:
Device Type (A/D Converter)
Secondary Attributes: Technology (CMOS)
Package (SOP)
Voltage (5V or above)
2001.5
2010
1995
1992.5
7.8
12.5
6.5
5.3
15
35.25
5.25
-0.25
22.8
47.75
11.75
5.05
Display Digits
Primary Attributes:
Device Type (Display)
Secondary Attributes: Technology
Package
Voltage
1990
N/A
N/A
N/A
6
N/A
N/A
N/A
-1
N/A
N/A
N/A
-5
N/A
N/A
N/A
m+2.5s-p
m+3.5s-p
14
26
9
23
0.5
5.7
4
14
-0.25
5.05
-1
5
Digital Effects
Sustainability
Device
m
s
m+2.5s-p
m+3.5s-p
DAC
Primary Attributes:
Device Type (D/A Converter)
Secondary Attributes: Technology (CMOS)
Package (SOP)
Voltage (5V or above)
2001.5
2010
1995
1992.5
7.8
12.5
6.5
5.3
15
35.25
5.25
-0.25
22.8
47.75
11.75
5.05
Dual Op Amp
Primary Attributes:
Device Type (Amplifier)
Secondary Attributes: Technology (Bipolar)
Package (SOP)
Voltage (5V or above)
2004.5
1975
1995
N/A
8.3
12.5
6.5
N/A
19.25
0.25
5.25
N/A
27.55
12.75
11.75
N/A
Display Controller
Primary Attributes:
Device Type (Specialty, Consumer)
Secondary Attributes: Technology (CMOS)
Package (SOP)
Voltage (5V or above)
2001.5
2010
1995
1992.5
7.8
12.5
6.5
5.3
15
35.25
5.25
-0.25
22.8
47.75
11.75
5.05
Effects Select Switch
Primary Attributes:
Device Type (Other R, L, C’s)
Secondary Attributes: Technology
Package
Voltage
1985
N/A
N/A
N/A
10
N/A
N/A
N/A
4
N/A
N/A
N/A
14
N/A
N/A
N/A
Microprocessor
Primary Attributes:
Device Type (16 bit Processor)
Secondary Attributes: Technology (CMOS)
Package (SOP)
Voltage (5V or above)
1994.5
2010
1987
1992.5
7
12.5
7.8
5.3
6
35.25
0.5
-0.25
13
47.75
8.3
5.05
Crystal Oscillator
Primary Attributes:
Device Type (Specialty, Consumer)
Secondary Attributes: Technology
Package (SOP)
Voltage (5V or above)
2001.5
N/A
1995
1992.5
7.8
N/A
6.5
5.3
15
N/A
5.25
-0.25
22.8
N/A
11.75
5.05
m+2.5s-p
m+3.5s-p
-0.25
5.05
0.25
11.75
-0.25
5.05
4
14
-0.25
5.05
-0.25
5.05
Digital Effects
Sustainability
Least Sustainable Aspects
• Display Digits
– Decrease operating voltage
• Display Controller
– Decrease operating voltage
• Microprocessor
– Decrease operating voltage
Digital Effects
PCB Layout
2
5
2
9
3
8
7
1
12
8
6
13
4
2
1
Digital Signal Processor
2
7 Segment Display
3
Display Controller
4
Digital-to-Analog Converter
5
Analog-to-Digital Converter
6
Dual Operational Amplifier
7
Oscillator
8
Potentiometer
9
SP4T Switch
10
Capacitor
11
Resistor
12
Zener Diode
13
Interface Connection
Digital Effects
Manufacturing Considerations
• Potentiometer must be manually placed
• SP4T switch must be manually placed
• Signal lines must be very clean
Digital Effects
Test Considerations
• Audio input stage voltage range correct
• ADC and DAC properly functioning
• All digital effects selectable and
functioning
• Audio output stage voltage range correct
Digital Effects
Waveforms
Power Supply
Bounnong
Khamphoumy
121
The i1
Analog Comparison
System
Frequency Selector
Attack / Decay Control
Signal Routing
Analog Controls
Summing
Amp
Low Freq Oscillator
Digital
Controls
Analog Audio
Analog Control
DSP State
16 bit Digital Audio
16 bit Digital Control
Analog Audio Output
Analog Effects
Processor
Including
ADC &
Memory
Power Supply
Pre Amp
Filter
DAC
Joe
Mike
Jason
Kahnec
122
Bounnong
Power Supply
Description
Purpose
●
To provide each block with the voltage and current it needs.
Function
●
Interface between the product and the external power grid.
Converts AC voltage into three separate, regulated DC voltages.
●
Kept separate from the main PCB.
●
123
Power Supply
Block Requirements
Performance Requirements – Electrical Interfaces
*All signals that interface w/ other blocks are output power signals.
Signal 1 Nominal Value
+5 VDC
Signal 1 Tolerance
5.00%
Max. Signal 1 Voltage Ripple
.3 V
Max. Signal 1 Load Current
2A
Signal 2 Nominal Value
-5 VDC
Signal 2 Tolerance
5.00%
Max. Signal 2 V. Ripple
.3V
Max. Signal 2 Load Current
2A
Signal 3 Nominal Value
6.3 VAC
Max. Signal 3 Load Current
150 mA
Signal 4 Nominal Value
100 VDC
Signal 4 Tolerance
5.00%
Max. Signal 4 V. Ripple
.5V
Max. Signal 4 Load Current
500 μA
124
Power Supply
Block Requirements
Standard Requirements – Environmental & Safety
Min. Oper. Temp. Range
Min. Oper. Humidity Range
Min. Storage Temp. Range
Min. Storage Humidity Range
Primary EMC Standards
0 to 40 °C
0 to 100 % RH
-10 to 40 °C
0 to 100 % RH
IEC61000-4-4, IEC61000-4-5,
IEC61000-4-8, IEC61000-411, EN61001-3-3
125
Power Supply
Block Requirements
Standard Requirements – Power Interfaces
Source 1 Connection Type
Min. Source 1 Voltage Range
Min. Source 1 Freq. Range
Max. Source 1 Power Consumption
Source 2 Connection Type
Min. Source 2 Voltage Range
Min. Source 2 Freq. Range
Max. Source 2 Power Consumption
*Source 1 and Source 2 are mutually exclusive.
Permanent
102 to 132 VAC
57 to 63 Hz
25 W
Permanent
196 to 253 VAC
47 to 53 Hz
25 W
126
Power Supply
Block Requirements
Standard Requirements – Mechanical
Max. Volume
Max. Mass
Electrical Connectors
Max. No. of PCBs
Max. PCB Area
2360 cm3
2 kg
AC power inlet & circular
connector
1
310 cm2
Standard Requirements – Mfg. & Life Cycle
Max. Parts Count
Product Life Time
Full Warranty Period
60
10 Yrs
90 Days
127
Power Supply
Sub-Circuit Block Diagram
120 VAC
Fuse
XFormer
Bridge
Rectifier
Filter
Voltage
Regulator
+5 VDC
XFormer
Bridge
Rectifier
Filter
Voltage
Regulator
-5 VDC
Fuse
XFormer
Fuse
XFormer
230 VAC
6.3 VAC
Bridge
Rectifier
Filter
Voltage
Regulator
100 VDC
Power Supply
Signal Definition Table
Power Signals
Type Dir. Voltage Voltage Range Freq
Nominal Min
DC
Power1 VCC +5V Power
DC
Power2 VCC -5V Power
Power3 Heater AC
Voltage
Power
Power4 Plate
DC
Voltage
Power
Freq Range
% VVReg Ripple Current
Max Nominal Min
Max
Max
Max
Max
Output
+5.0V
4.75V
5.25V
DC
0
N/A
5.00%
0.1V
2A
Output
-5.0V
-5.25V -4.75V
DC
0
N/A
5.00%
0.1V
2A
Output
6.3V
5.99V
6.62V
50 or 60
47
63
N/A
N/A
.15A
Output
+100V
95V
105
DC
0
N/A
5.00%
0.25V
.5mA
Power5 AC Input AC
(Domestic)
Power Input
120V
102V
132V
60
57
63
N/A
N/A
Power6 AC Input AC
(European)
Power Input
230V
196V
253V
50
47
53
N/A
N/A
129
Power Supply
Schematic
Power Supply
6.3 V Line – Transformer
●
●
●
2.5 VA transformer; rated at 6.3 V, 400 mA.
24% voltage regulation.
Turns Ratio – 18.25 (Domestic), 36.51 (Global)
Worst-Case 1
Worst-Case 2
A. Domestic (Vline = 132 V)
A. Domestic (Vline = 102 V)
No Load
●V
out = (132 / 18.25)*(1.24)
= 8.97 V rms
Full Load
●V
out = 102 / 18.25
= 5.59 V rms
B. Global (Vline = 253 V)
No Load
●V
out = (253 / 19.17)*(1.24)
= 8.59 V rms
B. Global (Vline = 195.5 V)
Full Load
●V
out = 195.5 / 36.51
= 5.35 V rms
Power Supply
5 V Line – Transformer
●
●
●
20 VA transformer; rated at 8 V, 2.5 A.
20% voltage regulation.
Turns Ratio – 14.38 (Domestic), 28.75 (Global)
Worst Case 1
Worst Case 2
A. Domestic (Vline = 132 V)
A. Domestic (Vline = 102 V)
No Load
●V
out = (132 / 14.38)*(1.20)
= 11.02 V rms
Full Load
●V
out = 102 / 14.38
= 7.09 V rms
B. Global (Vline = 253 V)
No Load
●V
out = (253 / 28.75)*(1.20)
= 10.56 V rms
B. Global (Vline = 195.5 V)
Full Load
●V
out = 195.5 / 28.75
= 6.8 V rms
Power Supply
5 V Line – Bridge Rectifiers
●
●
●
●
Average forward current rating, IF = 4 A.
Non-repetitive peak forward surge current for <= 8.3 ms, IFSM = 125 A.
Peak inverse voltage, PIV = 200 V.
Max. Forward voltage drop, VF = 1.1 V per element.
Worst Case 1
Worst Case 2
A. Vin = 11.02 V rms
A. Vin = 6.8 V rms
Forward-Biased
●V
out = 11.02*sqrt(2) – 2*(.7)
= 14.18 VPeak
Reverse-Biased
●V
in = -11.02*sqrt(2)
= -15.58 V
Output Voltage
●V
out = 6.8*sqrt(2) – 2*(1.1)
= 7.42 VPeak
(which is less than PIV)
(enough for output voltage and dropout
voltage of regulator, ~ 6.5 V)
Power Supply
5 V Line – Capacitive Filter
●
●
●
●
6800 μF electrolytic capacitor w/ a 20% tolerance.
Working Voltage, VW = 35 V.
Anticipated Load Current, IL = 1 A.
Acceptable Voltage Ripple, VR = 1.5 V.
Capacitance Analysis
A. C = (IL*T) / (2*Vr) = (1*(1/60)) / (2*1.5) = 5.55 mF
(will use a 6.8 mF cap. in actual design)
Worst Case 1
A. Vin(from bridge) = 14.18 V
(which is less than cap's VW)
Power Supply
5 V Line – Capacitive Filter Cont.
Worst Case 2
●
Filter capacitor at -20%, +20%, and nominal.
-20%
+20
%
Power Supply
5 V Line – Voltage Regulators
●
●
●
LT1083-5 from Linear Technologies.
Fixed 5 V output w/ 2% tolerance.
Max. Load Regulation = 35 mV.
●
●
Max. Ground Current, IG = 10 mA.
Max. Dropout Voltage = 1.5 V.
Worst Case
Max. Power Dissipation
●
PD = (Vi – Vo)*ILoad + Vi*IGround
= (14.18 – 4.87)*2 + 14.18*.01 = 18.76 W
Thermal Considerations
A. Control Section
●
TA = TJ – PD*(ΘHS + ΘCase-to-HS + ΘJC)
= 125 – 18.76*(3.2 + .2 + .5) = 51.84 ˚C
B. Power Transistor
●
TA = TJ – PD*(ΘHS + ΘCase-to-HS + ΘJC)
= 150 – 18.76*(3.2 + .2 + .5) = 76.84 ˚C
●
●
Means, internal ambient temperature
should be kept below 51 ºC
Heatsinks are critical, but LDO also
has a Built-in Thermal Shutdown
(160 ºC).
Power Supply
100 V Line – Transformer
●
●
●
6 VA transformer; rated at 115 V, 50 mA.
69% Voltage Regulation, according to actual benchtesting.
Turns Ratio – 1 (Domestic), 2 (Global)
Worst-Case 1
Worst-Case 2
A. Domestic (Vline = 132 V)
A. Domestic (Vline = 102 V)
No Load
●V
out = (132 / 1)*(1.69)
= 223.08 V rms
Full Load
●V
out = 102 / 1
= 102 V rms
B. Global (Vline = 253 V)
No Load
●V
out = (253 / 2)*(1.69)
= 213.79 V rms
B. Global (Vline = 195.5 V)
Full Load
●V
out = 97.75 V rms
Power Supply
100 V Line – Bridge Rectifier
●
●
●
●
Average forward current rating, IF = 4 A.
Non-repetitive peak forward surge current for <= 8.3 ms, IFSM = 125 A.
Peak inverse voltage, PIV = 400 V.
Max. Forward voltage drop, VF = 1.1 V per element.
Worst-Case 1
Worst-Case 2
A. Vin = 223.08 V rms
A. Vin = 97.75 V rms
Forward-Biased
●V
out = 223.08*sqrt(2) – 2*(.7)
= 314.08 V
Reverse-Biased
●V
in = -213.79*sqrt(2)
= -315.48 V
Output Voltage
●V
out = 97.75*sqrt(2) – 2*(1.1)
= 136.04 V
(which is less than PIV)
Power Supply
100 V Line – Filter & Regulator
●
●
●
4.7 μF electrolytic capacitor w/ a 20%
tolerance.
Working Voltage, VW = 400 V.
Anticipated Load Current, IL = .5 mA.
●
●
Accepted Voltage Ripple, VR = 1 V.
100 V zener diode w/ 5% tol.
Capacitance Analysis
A. C = (IL*T) / (2*Vr) = ((.5E-3)*(1/60)) / (2*1) = 4.17 μF
(will use a 4.7 μF cap. in actual design)
Worst Case 1
A. Vout(from bridge) = 314.08 V
(which is less than cap's VW)
Power Supply
PCB Layout
Power Supply
Passive Component Specs.
Component
Fixed Capacitor
(+5V Regulator)
Fixed Capacitor
(+5V Regulator)
Fixed Capacitor
(+5V Regulator)
Fixed Capacitor
(-5V Regulator)
Fixed Capacitor
(-5V Regulator)
Fixed Capacitor
(-5V Regulator)
Fixed Capacitor
(+100V Regulator)
Nominal
Tol.
Value
Max.
Derated
Power Working Composition Package
Dielectric
Voltage
Cap.
6.8 mF
20%
XXX
25 V
Al. Electrolytic
Radial
10 μF
10%
XXX
35 V
Solid Tantalum
Radial
22 μF
10%
XXX
35 V
Solid Tantalum
Radial
6.8 mF
20%
XXX
25 V
Al. Electrolytic
Radial
100 μF
10%
XXX
20 V
Solid Tantalum
Radial
100 μF
10%
XXX
20 V
Solid Tantalum
Radial
4.7 μF
20%
XXX
450 V
Al. Electrolytic
Radial
141
Power Supply
Connector and Harness
Input
●
●
●
AC receptacle with IEC 320
compliance, will be used for AC
input.
Switch will be used to switch
between domestic and non-domestic
line voltages.
Each transformer input equipped
with current fuse.
Output
●
●
●
●
●
Outputs are +5VDC, -5VDC, 6.3VAC,
+100VDC, and GND.
Receptacle installed on Power Supply
Board and Main Board, each.
Utilizes 7 contacts, one for each voltage
and three separate grounds.
Contacts crimped to 18 AWG, stranded
wire.
Harness should be six feet in length;
sufficient for Power Board to lay on floor.
Receptacle
Plug
Power Supply
Bill of Materials
QTY Generic Name
1
1
1
3
1
1
2
1
2
1
2
2
2
2
14
14
1
1
52
Xformer, 10V Secondary
Xformer, 6.3V Secondary
Xformer, 115V Secondary
Bridge Rectifier
Tantalum Capacitor, 10μF
Tantalum Capacitor, 22μF
Tantalum Capacitor, 100μF
Electrolytic Cap., 4.7 μF
Voltage Regulators, 5V
Zener Diode, 100V, 5%
Heat Sinks
Electrolytic Cap., 6.8 mF
Circular Connector (Receptacle)
Circular Connector (Plug)
Pin Contact
Socket Contact
AC Receptacle
18 AWG Wire (42 ft)
Mfg 1
Mfg 1 Part #
Tamura
Tamura
Triad
Diode, Inc
AVX Corp.
AVX Corp.
AVX Corp.
Nichicon
Linear Tech.
Vishay Semi.
Wakefield
Nichicon
Amp/Tyco
Amp/Tyco
Amp/Tyco
Amp/Tyco
Kobiconn
PL56-20-130B
3FD-312
FP230-25
PBPC603
TAP106K035SCS
TAP226K035SCS
TAP107K020CCS
UVZ2W4R7MPD
LT1083CP-5
1N4764A
657-20ABP
UVZ1E682MHD
211401-1
211399-1
66591-1
66592-1
161-R301SNC04
TH/SMT
Package
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
XXX
TH
XXX
XXX
XXX
XXX
XXX
Low-Profile
Low-Profile
Low-Profile
PBPC3
Radial
Radial
Radial
Radial
TO-3P
DO-41
XXXXX
Radial
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
Placement
Auto/Man
Area mm2
PCB
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
4838.7
1142.8
3225.8
248.1
23.8
28.3
63.6
50.3
85.8
78.26
1064.3
254.5
XXX
XXX
XXX
XXX
XXX
11104.26
$Cost/One $Cost Total
$18.14
$6.08
$12.09
$1.69
$1.28
$2.67
$8.09
$0.39
$8.83
$0.07
$0.86
$2.64
$3.34
$3.06
$0.17
$0.19
$0.95
$4.99
$18.14
$6.08
$12.09
$5.07
$1.28
$2.67
$16.18
$0.39
$17.66
$0.07
$1.72
$5.28
$6.68
$6.12
$2.38
$2.66
$0.95
$4.99
$110.41
Power Supply
Reliability Assessment
Max. Tr (°C) Max. Vr (V)
Part
6.3V Xformer, X1
130
5 V Xformer, X2
130
322
115V Xformer, X3
130
Diode Bridge, D1
125
200
Diode Bridge, D2
125
200
Diode Bridge, D3
125
200
Elect. Cap, C1
105
25
Elect. Cap, C2
105
25
Elect. Cap, C3
105
450
Tant. Cap., C4
85
35
Tant. Cap., C5
85
20
Tant. Cap., C6
85
35
Tant. Cap., C7
85
20
Zener Diode, Z1
175
N/A
IC V. Regulator, U1
125
20
IC V. Regulator, U2
125
20
Plastic Shell Connector, P1
125
600
Plastic Shell Connector, P2
125
3000
–
–
πT
1.160
1.160
1.160
1.201
1.201
1.201
1.450
1.450
1.450
2.032
2.032
2.032
2.032
0.945
1.201
1.201
1.201
1.201
πV
1.0
1.0
1.0
1.0
1.0
1.0
0.504
0.504
0.273
0.282
2.331
0.161
0.191
1.0
1.0
1.0
1.0
1.0
πE
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
πQ
λFITS
3.0
52.183
3.0
52.183
3.0
52.183
3.0
14.412
3.0
14.412
3.0
14.412
3.0
87.696
3.0
87.696
3.0
47.422
3.0
17.191
3.0
142.098
3.0
9.815
3.0
11.643
3.0
133.245
3.0
9.008
3.0
9.008
3.0
###
3.0
###
Total FITS 2916.41 MBTF =39.1Yrs
From the spreadsheet, we can see that the dominant parts for unreliability are the plastic shell
connectors. It's failure rate is high for the method we chose, Method D.
Reliability can be improved by having all the parts machine-placed, rather than by hand. Also if
parts were purchased directly from the manufacturer, that would improve reliability. A last resort
would be to design the power supply so that it is part of the main board. This would eliminate
the need for the plastic shell connectors.
Prototype Information
Overall Prototype Plan
Construction
• 4 PCB’s
– Interface and LFO, Power,
Digital Effects, Output
Stage
– Power board separate from
main unit
– Size of each 232 x 232 cm
– Total of 216,000 cm2
•
•
•
•
Total Volume: 9000 cm3
TTL and CMOS compatible
Purfboard prototype board
¼” Phono output
Functions Demonstrated
•
Unique User Interface
– 3 input strips demonstrated vs. 6 in
design
•
Analog Overdrive
Appendices
High Level Gantt Chart
Appendix-Low-Frequency Oscillator
Block Task-Resources Estimate
• Project definition and system
design phases:
• Verification, integration, and
implementation phase:
• Testing and fabrication of final product:
Estimated total manhours:
Estimated total cost:
80 hours
140 hours
40 hours
260 manhours
$57.84
(includes parts and fabrication)
Appendix-Low-Frequency Oscillator
Fine Frequency Adjust
•
•
FADJ; [Max frequency deviation is +/- 70%]
VFADJ = -0.0343 x (% deviation)
VFADJ = -0.0343 x (+/-70)
VFADJ = -2.4 and 2.4
RF = (VREF – VFADJ) / 250 μA
RF = (2.5 – 2.4) / 250 μA = 400Ω
RF = (2.5 – (-2.4) / 250 μA = 19.6 kΩ
So, RF = 400Ω to 19.6kΩ for maximum frequency deviation (20kΩ pot)
• For 10kΩ potentiometer:
10kΩ = (2.5 – VFADJ) / 250 μA => VFADJ = 0 V=>0% deviation
100Ω = (2.5 – VFADJ) / 250 μA => VFADJ = 2.4 V=>-70% deviation
Related documents