Download Improper Integrals, Arclength, Surface Area, Centroids

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Improper Integrals, Arclength, Surface Area, Centroids
I. Decide if the following are convergent or divergent integrals. Evaluate them if they are convergent.
Z
5
dx
3x − 6
2
Z ∞
dx
2
x +4
0
Z 1
ln(x) dx
√
6 (convergent)
(1)
=
π
(convergent)
4
(2)
=
−1 (convergent)
(3)
=
π
(convergent, u = ex )
4
(4)
=
0 (convergent)
(5)
(divergent)
(6)
0
∞
ex
dx
e2x + 1
Z0 ∞
x
dx
4+1
x
−∞
Z ∞
xex dx
Z
=
0
II. Use the Comparsion Test to decide if the following converge or diverge:
∞
ex
√
x
1
Z ∞ √
x
2 + 1)
(x
2
Z ∞
cos2 (x)
x2 + 2
Z ∞0
arctan(x)
x3 + 2
0
Z ∞
sin2 (x) + 1
√
x+1
1
Z
dx
dx
dx
dx
dx
ex
1
√ ≥ √ f orx > 1
x
x
√
√
x
x
1
converges 0 ≤ 2
≤ 2 = 3/2 f orx > 2
(x + 1)
x
x
cos2 (x)
1
1
converges 0 ≤ 2
≤ 2
≤ 2 f orx > 0
x +2
x +2
x
arctan(x)
π 1
π 1
converges 0 ≤
≤
≤
f or x > 0
x3 + 2
2 x3 + 2
2 x3
sin2 (x) + 1
1
1
√
diverges
≥√
≥ √ f or x ≥ 1
x+1
x+1
2 x
diverges
(7)
(8)
(9)
(10)
(11)
III. Find the arclength of the following curves:
1
y = (1 + 2x)(3/2)
3
y=
1 2
(x + 2)(3/2)
3
Z
y=
0
x
√
et − 1 dt
0<x<1
1
AN S : L =
0
Z
√
√
8 2 2
2 + 2x dx = −
3
3
AN S : L =
1<x<8
AN S :
1<x<2
AN S :
0 < x < π/6
AN S :
0 < x < ln(4)
AN S :
0
(12)
1
4
(1 + x2 ) dx =
3
0
Z 8 √ 2/3
x +2
L=
dx = 33/2 (23/2 − 1)
1/3
x
1
Z 2
4 + x6
21
L=
dx =
3
4x
16
1
Z π/6
1
L=
sec(x) dx = ln(3)
2
0
Z ln(4)
L=
2ex/2 dx = 2
0<x<1
3
y = √ x(2/3)
2
x6 + 8
y=
16x2
y = log(sec(x))
Z
(13)
u = x2/3(14)
(15)
(16)
(17)
IV. Find the surface area of the surface formed by revolving the following curves about the x-axis:
Z 3
√
√
√
4π 3 x dx = 16π 3
y = 3x 1 < x < 3 AN S :
S=
(18)
1
y=
√
1
<x<1
3
AN S :
2 3
x
3
0<x<1
AN S :
25 − x2
2<x<3
AN S :
3x + 1
y=
y=
p
−
1
√
49
π 12x + 13 dx =
π
9
−1/3
Z 1
4 3p
1 3/2
5 −1 π
πx 1 + 4x2 dx =
S=
3
18
0
Z 3
S=
10π dx = 10π
Z
S=
(19)
(20)
(21)
2
y = cos(x)
y=
3 2/3
x
2
π/4
Z
π
0<x<
4
AN S :
0<x<1
AN S :
p
2πcos(x) 1 + sin2 (x) dx
S=
1
Z
3πx1/3
S=
0
p
6 √
1 + x2/3 dx =
2 + 1) π
5
u = x1/3
Z 1
p
S=
πx2 1 + x2 dx
use
1
y = x2
2
0<x<1
(22)
0
AN S :
0
(23)
(24)
√ π √
=
ln( 2 − 1) + 3 2 (25)
8
8. [10pts] Find the x and y coordinates of the center of mass of the centroid (region) bounded by the curves:
y=
1 2
x , y = 0, x = 0, x = 2,
2
y = ex , y = 0, x = 0, x = ln(2)
y = sin(x), y = 0, x = 0, x =
π
2
x̄ =
3
3
, ȳ =
2
5
x̄ = 2 ln(2) − 1, ȳ =
0<x<
x̄ = 1 , ȳ =
3
4
π
8
Indefinite integrals and Trigonometric Identities
Some commonly used trigonometric identities are:
sin2 (x) + cos2 (x)
=
1
tan (x) + 1
=
cos2 (x)
=
sin2 (x)
=
sin(2x)
=
sin(x) cos(y)
=
cos(x) cos(y)
=
sin(x) sin(y)
=
sec2 (x)
1
(1 + cos(2x))
2
1
(1 − cos(2x))
2
2 sin(x) cos(x)
1
(sin(x + y) + sin(x − y))
2
1
(cos(x + y) + cos(x − y))
2
1
(cos(x − y) − cos(x + y))
2
2
Some commonly integrals worth noting include:
Z
1
u2 + 1
Z
1
√
1 − u2
Z
tan(u)
Z
sec(u)
du
= arctan(u) + c
du
= arcsin(u) + c
du
= ln|sec(u)| + c
du
= ln |sec(u) + tan(u)| + c
Related documents