Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
An example from the last lecture Evaluate Z π 4 sec3 x dx. 0 A. (ln |secx + tan x|)3 + C √ √ B. 22 + 12 ln( 2 + 1) √ 3 C. ln( 2 + 1) D. π 4 Remark: Use integration by parts. Math 105 (Section 204) Integrals via trigonometric substitution 2011W T2 1/5 Identifying a viable strategy Which of the following strategies would you apply to compute the following indefinite integral? Z sec3 x tan x dx. A. integration by parts with u 0 = sec 2 x, v = sec x tan x B. integration by parts with u 0 = tan x, v = sec3 x C. substituting u = tan x D. substituting u = sec x Remark: Refer to the strategies outlined in Tables 7.1 and 7.2 in section 7.2. Math 105 (Section 204) Integrals via trigonometric substitution 2011W T2 2/5 Example : secm x tann x; m, n odd Find f ( π4 ) if f 0 (x) = sec3 x tan x, A. √ 2 3( 1 f (0) = . 3 2 + 1) B. undefined C. 1 D. 2/3 Math 105 (Section 204) Integrals via trigonometric substitution 2011W T2 3/5 Trigonometric substitutions If your integral contains a2 − x 2 x 2 + a2 x 2 − a2 Math 105 (Section 204) substitute x = a sin θ x = a tan θ x = a sec θ use the identity a2 − a2 sin2 θ = a2 cos2 θ a2 + a2 tan2 θ = a2 sec2 θ a2 sec2 θ − a2 = a2 tan2 θ Integrals via trigonometric substitution 2011W T2 4/5 Example Find the value of the integral Z 0 2 √ x2 dx. 4 + x2 √ A. 2 2 B. −3 √ √ C. 2 2 − 2 ln( 2 + 1) D. ln 2 Remark: Use an appropriate substitution as outlined in Table 7.3. Math 105 (Section 204) Integrals via trigonometric substitution 2011W T2 5/5