Download An example from the last lecture Evaluate Z sec

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
An example from the last lecture
Evaluate
Z
π
4
sec3 x dx.
0
A. (ln |secx + tan x|)3 + C
√
√
B. 22 + 12 ln( 2 + 1)
√
3
C. ln( 2 + 1)
D.
π
4
Remark: Use integration by parts.
Math 105 (Section 204)
Integrals via trigonometric substitution
2011W T2
1/5
Identifying a viable strategy
Which of the following strategies would you apply to compute the
following indefinite integral?
Z
sec3 x tan x dx.
A. integration by parts with u 0 = sec 2 x, v = sec x tan x
B. integration by parts with u 0 = tan x, v = sec3 x
C. substituting u = tan x
D. substituting u = sec x
Remark: Refer to the strategies outlined in Tables 7.1 and 7.2 in
section 7.2.
Math 105 (Section 204)
Integrals via trigonometric substitution
2011W T2
2/5
Example : secm x tann x; m, n odd
Find f ( π4 ) if
f 0 (x) = sec3 x tan x,
A.
√
2
3(
1
f (0) = .
3
2 + 1)
B. undefined
C. 1
D. 2/3
Math 105 (Section 204)
Integrals via trigonometric substitution
2011W T2
3/5
Trigonometric substitutions
If your integral contains
a2 − x 2
x 2 + a2
x 2 − a2
Math 105 (Section 204)
substitute
x = a sin θ
x = a tan θ
x = a sec θ
use the identity
a2 − a2 sin2 θ = a2 cos2 θ
a2 + a2 tan2 θ = a2 sec2 θ
a2 sec2 θ − a2 = a2 tan2 θ
Integrals via trigonometric substitution
2011W T2
4/5
Example
Find the value of the integral
Z
0
2
√
x2
dx.
4 + x2
√
A. 2 2
B. −3
√
√
C. 2 2 − 2 ln( 2 + 1)
D. ln 2
Remark: Use an appropriate substitution as outlined in Table 7.3.
Math 105 (Section 204)
Integrals via trigonometric substitution
2011W T2
5/5
Related documents