Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Section 8.3: Trigonometric Substitution Integration by trigonometric substitution is used if the integrand involves a radical and u-substitution fails. There are three cases to consider: √ 1. If the√integrand involves a2 − x2 , then substitute x = a sin θ so that dx = a cos θdθ and a2 − x2 = a cos θ. √ 2. If the√integrand involves x2 − a2 , then substitute x = a sec θ so that dx = a sec θ tan θdθ and x2 − a2 = a tan θ. √ 3. If the√integrand involves x2 + a2 , then substitute x = a tan θ so that dx = a sec2 θdθ and x2 + a2 = a sec θ. Z Example: Evaluate x2 dx √ . 25 − x2 √ Let x = 5 sin θ, dx = 5 cos θdθ, 25 − x2 = 5 cos θ. Then Z Z 5 cos θ dx √ = dθ 2 2 25 sin2 θ(5 cos θ) x 25 − x Z 1 1 = 2 dθ 25 Z sin θ 1 csc2 θdθ = 25 1 = − cot θ + C. 25 Drawing a reference triangle, we find that √ Z 1 dx 25 − x2 √ = − cot θ + C = − + C. 25 25x x2 25 − x2 5 𝑥 𝜃 25 − 𝑥 2 Z Example: Evaluate x2 dx √ . x2 − 4 √ Let x = 2 sec θ, dx = 2 sec θ tan θdθ, x2 − 4 = 2 tan θ. Then Z Z 2 sec θ tan θ dx √ = dθ 2 2 4 sec2 θ(2 tan θ) x x −4 Z 1 1 = dθ 4 sec θ Z 1 = cos θdθ 4 1 sin θ + C. = 4 Drawing a reference triangle, we find that √ Z dx 1 x2 − 4 √ = sin θ + C = + C. 4 4x x2 x2 − 4 𝑥 𝑥2 − 4 𝜃 2 Z Example: Evaluate 0 3 dx √ . 9 + x2 √ Let x = 3 tan θ, dx = 3 sec2 θdθ, 9 + x2 = 3 sec θ. Then Z 3 Z π/4 dx 3 sec2 θ √ = dθ 3 sec θ 9 + x2 0 0 Z π/4 = sec θdθ 0 = ln | sec θ + tan θ||π/4 0 √ = ln | 2 + 1|. Z Example: Evaluate x2 dx. (4 − x2 )3/2 Let x = 2 sin θ, dx = 2 cos θdθ, (4 − x2 )3/2 = (2 cos θ)3 = 8 cos3 θ. Then Z Z x2 4 sin2 θ(2 cos θ) dθ dx = (4 − x2 )3/2 8 cos3 θ Z sin2 θ = dθ cos2 θ Z = tan2 θdθ Z = (sec2 θ − 1)dθ = tan θ − θ + C. Drawing a reference triangle, we find that Z x x2 −1 x dx = tan θ − θ + C = √ + C. + sin (4 − x2 )3/2 2 4 − x2 4 𝑥 𝜃 4 − 𝑥2 √ Note: If the integrand involves ax2 + bx + c, then complete the square and use the appropriate trigonometric substitution. Z Example: Evaluate √ x2 dx . + 4x + 8 First, complete the square x2 + 4x + 8 = (x2 + 4x) + 8 = (x2 + 4x + 4) + 4 = (x2 + 2)2 + 4. Let u = x + 2, du = dx. Then Z Z dx du √ √ = . 2 x + 4x + 8 u2 + 4 √ Let u = 2 tan θ, du = 2 sec2 θdθ, u2 + 4 = 2 sec θ. Then Z Z 2 sec2 θdθ du √ = 2 sec θ u2 + 4 Z = sec θdθ = ln | sec θ + tan θ| + C √ u2 + 4 + u = ln +C 2 √ x2 + 4x + 8 + x + 2 = ln +C 2 √ = ln | x2 + 4x + 8 + x + 2| + C. Example: Evaluate Z √ 16 − x2 dx. √ Let x = 4 sin θ, dx = 4 cos θdθ, 16 − x2 = 4 cos θ. Then Z Z √ 2 16 − x dx = (4 cos θ)(4 cos θ)dθ Z = 16 cos2 θdθ Z = 8 (1 + cos 2θ)dθ 1 = 8 θ + sin 2θ + C 2 = 8θ + 8 sin θ cos θ + C √ x 16 − x2 −1 x = 8 sin +8 +C 4 4 4 x√16 − x2 −1 x = 8 sin + + C. 4 2