Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 4 Pre-Calculus Name________________________ Date_________________________ Trigonometric Functions Values — 6.2 & 6.4 Reference Angle Let θ be a nonquadrantal angle in standard position. The reference angle for θ is the acute angle θ R that the terminal side of θ makes with the x-axis. The reference angles are illustrated below for positive angles. Quadrant I θR = θ 1. Quadrant II θR = 1 8 0 ° − θ Quadrant III θR = θ − 1 8 0 ° Quadrant IV θR = 3 6 0 ° − θ θR = π − θ θR = θ − π θ R = 2π − θ Find the reference angle θ R if θ has the given measure. a) θ = 165° 5π b) θ = 3 c) θ = −315° 9π θ =− d) 4 Trigonometric Functions for Any Angle Consider an acute angle θ , in standard position. Let r denote the distance between the origin and a point P ( x, y ) that is on the terminal side of θ . The following picture illustrates this concept: Let θ be an angle in standard position on a rectangular coordinate system, and let P ( x, y ) be any point other than the origin on the terminal side of θ . If d ( O, P ) = r = x 2 + y 2 (note that r is always positive), then, sinθ = y r cosθ = x r tanθ = y , if x ≠ 0 x cscθ = r , if y ≠ 0 y s e cθ = r , if x ≠ 0 x cotθ = x , if y ≠ 0 y then sinθ = y NOTE: When r = 1 , and cosθ = x 2. Find the exact values of the six trigonometric functions of θ if θ is in standard position and P is on the terminal side. P ( − 8, − 1 5 ) 3. Find the exact values of sine, cosine and tangent of each angle whenever possible. Use r = 1 . a) 0 ° or 0 4. π b) 9 0 ° or c) 1 8 0 ° or π d) 2 7 0 ° or e) 3 6 0 ° or 2π 2 3π 2 Find the exact values of sine, cosine and tangent of each angle whenever possible. Use r = 1 . π a) 4 5 ° or b) 1 3 5 ° or 3π 4 c) 2 2 5 ° or 5π 4 d) 3 1 5 ° or 7π 4 4 5. 6. Find the exact values of sine, cosine and tangent of each angle whenever possible. Use r = 1 . π a) 3 0 ° or b) 1 5 0 ° or 5π 6 c) 2 1 0 ° or 7π 6 d) 3 3 0 ° or 1 1π 6 6 Find the exact values of sine, cosine and tangent of each angle whenever possible. Use r = 1 . a) 6 0 ° or π 3 b) 1 2 0 ° or 2π 3 c) 2 4 0 ° or 4π 3 d) 3 0 0 ° or 5π 3 Theorem on Reference Angles If θ is a nonquadrantal angle in standard position, then to find the value of a trigonometric function at θ , find its value for the reference angle θ R and prefix the appropriate sign. Positive Trigonometric Functions Quadrant II Sine Cosecant Smart Quadrant I All A Quadrant III Quadrant IV Tangent Cosine Cotangent Secant Trig Class 7. Find the exact value. a) s i n ( − 1 2 0 °) b) 2π sec 3 c) 3π cot − 4 d) c s c ( − 3 0 °) 8. Use the fundamental identities to find the values of the trigonometric functions for the given conditions. 3 cotθ = and cosθ < 0 4 9. Use the fundamental identities to find the values of the trigonometric functions for the given conditions. 1 and cosθ = − sinθ < 0 3 10. Approximate to three decimal places. a) c o s ( 2 . 5) b) c s c (1 8 5 ° 1 2′ 4 4′′ )