Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Find the following: 1. sin 30˚ (no calculator allowed) 2. sin 45˚ (no calculator allowed) 3. sin 75˚ (use a calculator) 4. Is sin 30˚ + sin 45˚ = sin 75˚? 5. What two unit circle values combine to be 165˚? 6. What two unit circle values combine to be 105˚? Find the following: 1. sin 30˚ (no calculator allowed) =½ 2. sin 45˚ (no calculator allowed) = 2 2 3. sin 75˚ (use a calculator) = 0.9659 4. Is sin 30˚ + sin 45˚ = sin 75˚? No, the two2are not ≠ 0.9659 equal ½ + 2 5. What two unit circle angles combine to be 165˚? 120 + 45 6. What two unit circle angles combine to be 105˚? 135 – 30 or 60 + 45 Chapter 5 Trigonometric Equations 5.4 MATHPOWERTM 12, WESTERN EDITION 5.4.1 Sum and Difference Identities sin(A + B) = sin A cos B + cos A sin B sin(A - B) = sin A cos B - cos A sin B cos(A + B) = cos A cos B - sin A sin B cos(A - B) = cos A cos B + sin A sin B tan A tan B tan( A B) 1 tan Atan B tan A tan B tan( A B) 1 tan Atan B 5.5.2 Finding Exact Values 1. Find the exact value for sin 750. Think of the angle measures that produce exact values: 300, 450, and 600. Use the sum and difference identities. Which angles, used in combination of addition or subtraction, would give a result of 750? sin 750 = sin(300 + 450) = sin 300 cos 450 + cos 300 sin 450 1 2 3 2 2 2 2 2 2 6 4 5.5.4 Finding Exact Values 2. Find the exact value for cos 150. cos 150 = cos(450 - 300) = cos 450 cos 300 + sin 450 sin300 2 3 2 1 2 2 2 2 6 2 4 5 3. Find the exact value for sin . 12 5 sin sin( ) 12 4 6 sin cos cos sin 4 6 4 6 2 3 2 1 2 2 2 2 6 2 4 3 4 12 3 4 12 2 6 12 5.5.5 Finding Exact Values 4. Find the exact value for tan 1650. tan 1650 = tan(1350 + 300) tan 135 tan 30 1 tan 135 tan 30 3 1 3 3 1 1 3 3 1 3 3 3 3 3 3 1 3 Rationalize the denominator • Multiply top and bottom by the conjugate of the bottom 3 3 3 3 Finding Exact Values 4. Find the exact value for tan 1650 (continued) tan 1650 Rationalize the denominator 3 3 3 3 3 3 96 3 3 93 12 6 6 2 3 3 3 3 Assignment Simplifying Trigonometric Expressions 1. Express cos 1000 cos 800 + sin 800 sin 1000 as a trig function of a single angle. This function has the same pattern as cos (A - B), with A = 1000 and B = 800. cos 100 cos 80 + sin 80 sin 100 = cos(1000 - 800) = cos 200 2. Express sin 3 cos 6 cos 3 sin 6 as a single trig function. This function has the same pattern as sin(A - B), with A 3 and B 6 . sin cos cos sin sin 3 6 3 6 3 6 sin 6 5.5.3 Using the Sum and Difference Identities Prove cos sin . 2 cos 2 cos cos sin sin 2 2 (0)(cos ) (1)(sin ) sin . sin sin L.S. = R.S. 5.5.6 Using the Sum and Difference Identities 3 Given cos , where 0 , 5 2 find the exact value of cos( ). x 6 cos r cos( ) cos cos sin sin x=3 6 6 6 r=5 3 3 4 1 ( )( ) ( )( ) 5 2 5 2 5 3 34 10 3 θ y=±4 3 34 Therefore, cos( ) . 6 10 sinθ = 4/5 5.5.7 Using the Sum and Difference Identities 2 4 and cos B , 3 5 where A and B are acute angles, Given sin A find the exact value of sin( A B ). sin( A B ) sin A cos B cos A sin B 2 4 5 3 ( )( ) ( )( ) 3 5 3 5 x y r A 5 2 3 B 4 3 5 8 3 5 15 Therefore, sin( A B ) 8 3 5 . 15 5.5.8 Assignment • Complete #’s 3-12 on worksheet • Answers: 9. – sin x 10. cos x 11. sin x 12. – tan x + 2 sin x Hints: 3. 345 = 300 + 45 4. 195 = 240 – 45 Identities Prove 2tan x 2 1 tan x 2sin sin2x. xcos x 2sin xcos x 2sin x cos2x sec x 2sin x x cos 1 cos 2 x 2sin x cos 2 x cos x 1 2sin xcos x L.S. = R.S. 5.5.16 Double-Angle Identities The identities for the sine and cosine of the sum of two numbers can be used, when the two numbers A and B are equal, to develop the identities for sin 2A and cos 2A. sin 2A = sin (A + A) cos 2A = cos (A + A) = sin A cos A + cos A sin A = cos A cos A - sin A sin A = 2 sin A cos A = cos2 A - sin2A Identities for sin 2x and cos 2x: sin 2x = 2sin x cos x cos 2x = cos2x - sin2x cos 2x = 2cos2x - 1 cos 2x = 1 - 2sin2x 5.5.9 Double-Angle Identities Express each in terms of a single trig function. a) 2 sin 0.45 cos 0.45 sin 2x = 2sin x cos x sin 2(0.45) = 2sin 0.45 cos 0.45 sin 0.9 = 2sin 0.45 cos 0.45 b) cos2 5 - sin2 5 cos 2x = cos2 x - sin2 x cos 2(5) = cos2 5 - sin2 5 cos 10 = cos2 5 - sin2 5 Find the value of cos 2x for x = 0.69. cos 2x = cos2 x - sin2 x cos 2(0.69) = cos2 0.69 - sin2 0.69 cos 2x = 0.1896 5.5.10 Double-Angle Identities Verify the identity tan A tan A 1 cos 2 A . sin 2A 1 (cos2 A sin2 A) 2sin Acos A 1 cos2 A sin2 A) 2 sin Acos A sin2 A sin2 A 2sin Acos A 2sin 2 A 2sin Acos A sin A cos A tan A L.S = R.S. 5.5.11 Double-Angle Identities sin 2x . Verify the identity tan x 1 cos 2x tan x 2sin x cos x 2 1 2 cos x 1 2sin x cos x 2 2cos x sin x cos x tan x L.S = R.S. 5.5.12 Double-Angle Equations 2 where 0 A 2. 2 2 For cosA = where 0 A 2, A and 7 . 2 4 4 7 7 9 15 2 A 2 n, 2 n. , , 2 A , 4 4 4 4 4 4 Find A given cosA2 = A 8 7 8 9 8 7 9 15 , 8 8 15 8 , 8 , 8 y 2 2 2 y = cos 2A 5.5.13 Double-Angle Equations 1 Find A given sin A 2 = - where 0 A 2. 2 1 7 11 For sinA = - where 0 A 2, A = and . 2 6 6 7 11 19 23 , , 2 A , 6 6 6 6 7 11 2A 2 n, 2 n. 6 6 A 7 11 19 23 , , , 12 12 12 12 y = sin 2A 7 12 11 12 19 12 23 12 1 y 2 5.5.14 Using Technology 2 tan x and predict the period. Graph the function f (x) 2 1 tan x The period is . Rewrite f(x) as a single trig function: f(x) = sin 2x 5.5.15 Applying Skills to Solve a Problem The horizontal distance that a soccer ball will travel, when 2 2v kicked at an angle , is given by d 0 sin cos , g where d is the horizontal distance in metres, v0 is the initial velocity in metres per second, and g is the acceleration due to gravity, which is 9.81 m/s2. a) Rewrite the expression as a sine function. Use the identity sin 2A = 2sin A cos A: 2v02 d sin cos g v02 d sin2 g 5.5.17 Applying Skills to Solve a Problem [cont’d] b) Find the distance when the initial velocity is 20 m/s. From the graph, the maximum 2 v0 distance occurs when = 0.785398. d sin2 g The maximum distance is 40.7747 m. 2 (20) The graph of sin reaches its d sin2 9.81 maximum when . 2 Distance Sin 2 will reach a maximum when 2 or . 2 4 Angle 5.5.18 Suggested Questions: Pages 272-274 A 1-16, 25-35 odd B 17-24, 37-40, 43, 47, 52 5.5.19