Download 10.7 Polar Coordinates

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
10.7 Polar Coordinates
Polar Axis
Definition of Polar Coordinates
Polar Coordinates are two values that
locate a point on a plane by its distance
from a fixed pole and its angle from a
fixed line passing through the pole
r, 
r
Pole

Polar Axis
Polar Coordinates Into
Rectangular Coordinates
Using Trigonometry
y  r  Sin
x  r  Cos
Finding Using
r  Cos , r  Sin 
r
Pole

Polar Axis
Rectangular Coordinates Into
Polar Coordinates
Using Trigonometry
y
Tan 
x
1  y 
Tan    
x
r x y
2
2
r, 
r
Pole
Polar Axis
2

x
y
Polar Graphpaper
Different ways of writing this same
point in Polar Coordinates
Adding or Subtracting multiplies of 360°
5,30
or
5,390 
or
5,330 
r, 
Different ways of writing this same
point in Polar Coordinates
Or using a negative length and multiplies of
180°
5,30
or
 5,210
or
 5,150
r, 
Polar-to-Rectangular Conversion
Given
 
 4, 
 6
  
 
  
 4,    4  Cos ,4  Sin  
 6 
6
 6 
3
 
Cos  
6 2
  1
Sin  
6 2


3
1
4
,4    2 3 ,2

2
2


Rectangular-to-Polar Conversion
Given
 5,12

12
Tan 
5
1  12 
Tan 
  67.4
 5
 67.4  180  112.6
r   5  12 
2
2
r  25  144
2
r  169  13
13,112.6
2
Changing a Polar equation into a
Rectangular equation
• Given the Polar equation
6
2  3Sin

6
 y 
r
 r  2  3    6

 y 
 r 

 2  3  
 r 

r
6
r
2  3Sin 
Changing a Polar equation into a
Rectangular equation
• Given the Polar equation
6
2  3Sin

6
 y 
r
 r  2  3    6

 y 
 r 

 2  3  
 r 

r
2r  3 y  6
 2r   3 y  6
2
2
4r 2  9 y 2  36 y  36
Changing a Polar equation into a
Rectangular equation
• Given the Polar equation
6
2  3Sin

6
 y 
r
 r  2  3    6

 y 
 r 

2

3

 
 r 

r
2r  3 y  6  2r   3 y  6
2
4r 2  9 y 2  36 y  36
2


4 x 2  y 2  9 y 2  36 y  36
4 x 2  4 y 2  9 y 2  36 y  36
4 x 2  5 y 2  36 y  36  0
Homework
Page 754 – 755
# 5, 10, 15, 25,
35, 45, 55, 65,
70, 75a
Homework
Page 754 – 755
# 31, 36, 41, 51,
56, 61, 69
Related documents